• 제목/요약/키워드: cell transfection

검색결과 493건 처리시간 0.021초

MiR-199a/b-5p Inhibits Lymphangiogenesis by Targeting Discoidin Domain Receptor 1 in Corneal Injury

  • Oh, Sooeun;Seo, Minkoo;Choi, Jun-Sub;Joo, Choun-Ki;Lee, Suk Kyeong
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.93-102
    • /
    • 2018
  • Discoidin domain receptor 1 (DDR1) is involved in tumorigenesis and angiogenesis. However, its role in lymphangiogenesis has been unknown. Here, we tested whether downregulation of DDR1 expression by miR-199a/b can suppress lymphangiogenesis. We also aimed to identify miRNA target site(s) in the 3' untranslated region (UTR) of DDR1. Transfection with miR-199a/b-5p mimics reduced expression of DDR1 and tube formation in primary human dermal lymphatic endothelial cells, whereas miR-199a/b-5p inhibitors showed the opposite effects. Critically, injection of miR-199a/b-5p mimics suppressed DDR1 expression and lymphangiogenesis in a corneal alkali-burn rat model. The three well-conserved seed matched sites for miR-199a/b-5p in the DDR1 3'-UTR were targeted, and miRNA binding to at least two sites was required for DDR1 inhibition. Our data suggest that DDR1 promotes enhanced lymphangiogenesis during eye injury, and miR-199a/b-5p suppresses this activity by inhibiting DDR1 expression. Thus, this miRNA may be useful for the treatment of lymphangiogenesis-related eye diseases.

Liposome을 매개로 한 태아 및 웅성 생식선으로의 전기적 유전자 도입 (Liposome-Mediated Electric Gene Delivery into Fetal and Adult Gonads)

  • Choi, S. C.;S. K. Choi;S. S. Choi;S. U. Kim;N. N. Cho;J. Y. Jung;C. S. Park;S. H. Lee;S. H. Lee
    • Reproductive and Developmental Biology
    • /
    • 제28권1호
    • /
    • pp.71-76
    • /
    • 2004
  • Gene delivery is one of the keen interests in animal industry as well as research on gene functions. Some of the in vivo gene delivery techniques have been successively used in various tissues for the gene therapy and transgenesis. Despite intensive efforts, it still remains to overcome problems of limited local and regional administration and low transgene expression. To improve the efficiency of gene delivery, a new procedure was tested. We injected exogenous DNA containing LacZ into the female or male gonads and then pulsed electric field. Electroporated gonads showed positive X-gal staining in many seminiferous tubules of the porcine fetal gonads. Exogenously introduced LacZ genes were also expressed in female porcine gonad. In addition, we demonstrated efficient gene delivery in gonad of adult mouse. Furthermore, we succeed to generate genetically modified germline cells showing GFP and positive X-gal signals. The results suggest that the newly developed gene delivery is an effective way of in vivo transfection in mammals. The developed gene delivery procedure should be useful in producing transgenic animals when combined with primary cell culture and nuclear transplantation.

Regulator of Calcineurin 1 Isoform 4 (RCAN1.4) Is Overexpressed in the Glomeruli of Diabetic Mice

  • Jang, Cho-Rong;Lim, Ji-Hee;Park, Cheol-Whee;Cho, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권5호
    • /
    • pp.299-305
    • /
    • 2011
  • Calcineurin (CaN) is activated in diabetes and plays a role in glomerular hypertrophy and extracellular matrix (ECM) accumulation. Here, kidneys from diabetic model mice were investigated for the expression of the regulator of CaN 1 (RCAN1) isoform 4 (RCAN1.4) which had been shown to be transcriptionally upregulated by CaN activation. We found the increased immunoreactivity for RCAN1 in the glomerular cells of db/db mice and streptozotocin-induced diabetic mice. In concordance, the expression of RCAN1 protein and RCAN1.4 mRNA were elevated in the whole kidney sample from db/db mice. Interleukin-$1{\beta}$ (IL-$1{\beta}$), tumor necrosis factor-${\alpha}$, and glycated albumin (AGE-BSA) were identified as inducers of RCAN1.4 in mesangial cells. Pretreatment of cyclosporine A blocked the increases of RCAN1.4 stimulated by IL-$1{\beta}$ or AGE-BSA, suggesting that activation of CaN is required for the RCAN1.4 induction. Stable transfection of RCAN1.4 in Mes-13 mesangial cells upregulated several factors relevant to ECM production and degradation. These results suggested that RCAN1.4 might act as a link between CaN activation and ECM turnover in diabetic nephropathy.

Interleukin-8 수용체와 G$_\alpha$ 16 subunit G protein 간의 분자상호 작용에 관한 연구 (Molecular Interaction Between Interleukin-8 Receptor and G$_\alpha$16 subunit G protein)

  • 하지희;강주섭;고현철;신인철;이창호
    • Biomolecules & Therapeutics
    • /
    • 제8권3호
    • /
    • pp.276-280
    • /
    • 2000
  • In order to identify the domains of the G$_{\alpha}$16 subunit G protein that are responsible for its activation by the Interleukin-8 receptor, a serious of chimeras between G$_{\alpha}$16 and G$_{\alpha}$11 were assessed for their abilities to be activated by these receptors. Co-expression of IL-8 receptor and chimeras in which the carboxyl-terminal regions of G$_{\alpha}$11 were replaced from 30 up to 156 amino acid residues with the corresponding regions of G$_{\alpha}$16 demonstrated that C-terminal 156 amino acid residues of the G$_{\alpha}$16 were not sufficient to confer IL-8 receptor interaction specificity. Testing of a reciprocal serious of chimeras composed of G$_{\alpha}$16 sequences at the amino terminus and G$_{\alpha}$11 sequences at the carboxyl terminals revealed that sequences extending from the amino tar- minus to amino acid 209 of G$_{\alpha}$16 were sufficient to 7ndow the chimera with 75-80% of interaction specificity for 7-8-induced activation. These results suggest th,.7t combined interactions of the C-terminal 30 amino acid residues and certain domains extending from the arts.ino terminus to amino acid 209 of Gal 6 protein may be involved in its couplings to IL-8 receptor.tain domains extending from the arts.ino terminus to amino acid 209 of Gal 6 protein may be involved in its couplings to IL-8 receptor.

  • PDF

Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

  • Zhang, Yaxin;Wang, Yuguang;Ma, Zengchun;Liang, Qiande;Tang, Xianglin;Tan, Hongling;Xiao, Chengrong;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.202-212
    • /
    • 2017
  • Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

노회(蘆薈)(알로에), 자화지정(紫花地丁)의 항산화, 항염증, 주름, 미백에 미치는 영향 (Effects of Aloe and Violae herba Extract on the Anti-oxidant, Anti-inflammatory, Anti-wrinkle and Whitening)

  • 김창훈;정현아;노석선;홍석훈
    • 한방안이비인후피부과학회지
    • /
    • 제23권1호
    • /
    • pp.23-43
    • /
    • 2010
  • Objective : This study was performed to assess the effects of Aloe and Violae herba extracts on skin disease and skin beauty. Methods : Anti-oxidant effects were measured by the scavenging for DPPH radical, xanthine oxidase activity. Anti-inflammatory effects were examined by relations in NO synthesis, IL-$1{\beta}$, IL-6, TNF-$\alpha$, NF-kB, COX-2, MAP kinase. The skin wrinkle formation effects were measured by collagenase and elastase activities. The whitening effects were examined by tyrosinase activities, melanin synthesis in MNT-1 cell. Results : 1. In an anti-oxidant test, Aloe and Violae herba extracts showed high radical scavenging activity. 2. In an anti-inflammatory test, Aloe and Violae herba extracts strongly inhibited the lipopolysaccharide(LPS)-induced nitric oxide(NO) release from the RAW 246.7 macrophage cells. Aloe and Violae herba extracts also inhibited the LPS-induced IL-$1{\beta}$ and COX-2 expressions. The inhibitory effects of Aloe and Violae herba extracts on macrophage activation were via the inhibition of NF-kB, evidenced by transient transfection assay. Furthermore, Aloe and Violae herba extracts weakly inhibited the activation of Jun-N-terminal kinase(JNK) but they did not have any effects on p38 MAP kinase in RAW 264.7 cells. 3. In the skin wrinkle formation assay, Aloe extract strongly inhibited collagenase and elastase, whose activity are tightly related with the wrinkle formation. 4. In the skin whitening assay, Aloe and Viloae herba extracts weakly inhibited tyrosinase activity, however, it was not statistically significant. Besides they did not have any effects on melanin synthesis, indicating that they could not be applicable for skin whitening. Conclusion : This study show that Aloe and Violae herba extracts may play a significant role in skin disease and skin beauty.

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

Prophylactic role of Korean Red Ginseng in astrocytic mitochondrial biogenesis through HIF-1α

  • Park, Jinhong;Lee, Minjae;Kim, Minsu;Moon, Sunhong;Kim, Seunghee;Kim, Sueun;Koh, Seong-Ho;Kim, Young-Myeong;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.408-417
    • /
    • 2022
  • Background: Korean Red Ginseng extract (KRGE) has been used as a health supplement and herbal medicine. Astrocytes are one of the key cells in the central nervous system (CNS) and have bioenergetic potential as they stimulate mitochondrial biogenesis. They play a critical role in connecting the brain vasculature and nerves in the CNS. Methods: Brain samples from KRGE-administered mice were tested using immunohistochemistry. Treatment of human brain astrocytes with KRGE was subjected to assays such as proliferation, cytotoxicity, Mitotracker, ATP production, and O2 consumption rate as well as western blotting to demonstrate the expression of proteins related to mitochondria functions. The expression of hypoxia-inducible factor-1α (HIF-1α) was diminished utilizing siRNA transfection. Results: Brain samples from KRGE-administered mice harbored an increased number of GFAP-expressing astrocytes. KRGE triggered the proliferation of astrocytes in vitro. Enhanced mitochondrial biogenesis induced by KRGE was detected using Mitotracker staining, ATP production, and O2 consumption rate assays. The expression of proteins related to mitochondrial electron transport was increased in KRGE-treated astrocytes. These effects were blocked by HIF-1α knockdown. The factors secreted from KRGE-treated astrocytes were determined, revealing the expression of various cytokines and growth factors, especially those related to angiogenesis and neurogenesis. KRGE-treated astrocyte conditioned media enhanced the differentiation of adult neural stem cells into mature neurons, increasing the migration of endothelial cells, and these effects were reduced in the background of HIF-1α knockdown. Conclusion: Our findings suggest that KRGE exhibits prophylactic potential by stimulating astrocyte mitochondrial biogenesis through HIF-1α, resulting in improved neurovascular function.

Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

  • Guoqing Ren;Weichao Lv;Yue Ding;Lei Wang;ZhengGuo Cui;Renshi Li;Jiangwei Tian;Chaofeng Zhang
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.543-551
    • /
    • 2023
  • Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, coimmunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-b1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.