• 제목/요약/키워드: cell reprogramming

검색결과 149건 처리시간 0.026초

Cell Cycle and Apoptosis of Bovine Fetal Fibroblast Cells following Different Activation Treatments

  • Bhak, Jong-Sik;Choe, Sang-yong
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.37-37
    • /
    • 2002
  • The success of embryo cloning depends on numerous factors; interaction between recipient ooplasm and donor nucleus, nuclear reprogramming, oocyte activation, and donor cell cycle and type. In this study, the cell cycle and apoptosis of bovine fetal fibroblast as a donor cell for embryo cloning were evaluated following different activation treatments. (omitted)

  • PDF

Comparisons of Development Potential in Bovine SCNT Embryos using Donor Cells treated with Different Demethylating Inhibitors

  • Jeon, Byeong-Gyun;Jeong, Gie-Joon;Rho, Gyu-Jin
    • 한국수정란이식학회지
    • /
    • 제30권3호
    • /
    • pp.229-237
    • /
    • 2015
  • To improve the developmental potential of bovine somatic cell nuclear transfer (SCNT) embryos, this study compared the developmental rates to blastocyst stage in the SCNT embryos using donor fibroblasts treated with 5-azacytidine (5AC) and S-adenosylhomocysteine (SAH) at different concentrations. Their reprogramming efficiency level was investigated with level of telomerase activity. Donor fibroblasts isolated from adult ear skin of a cow were exposed to 5AC and SAH at different concentrations during 2 passages. After nuclear transfer into enucleated recipient oocytes, the cleavage and developmental rates were significantly (p<0.05) decreased in the SCNT embryos using 5AC-treated fibroblasts (5AC-SCNT embryos), compared with those of non-treated control (control-SCNT embryos) and SAH-treated fibroblasts (SAH-SCNT embryos). The developmental rates to blastocyst stage tended to be slightly increased in the SAH-SCNT embryos at each of the concentrations, and especially, the developmental rates in the SCNT embryos using 1.0 mM SAH-treated fibroblasts were significantly (p<0.05) higher than that of control SCNT embryos. The mean numbers of total and ICM cell in blastocysts were also significantly (p<0.05) decreased in the 5AC-SCNT embryos, compared with those of other SCNT blastocysts. Further, the level of telomerase activity was also significantly (p<0.05) decreased in the 5AC-SCNT embryos than those of control and SAH-SCNT embryos. Whereas, a significantly (p<0.05) up-regulated telomerase activity was observed in SAH-SCNT embryos, compare with that of control-SCNT embryos. In conclusion, SCNT embryos using hypomethylated donor cells with SAH, not 5AC, may improve the developmental potential and reprogramming efficiency.

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming

  • Son, Myung Jin;Jeong, Jae Kap;Kwon, Youjeong;Ryu, Jae-Sung;Mun, Seon Ju;Kim, Hye Jin;Kim, Sung-wuk;Yoo, Sanghee;Kook, Jiae;Lee, Hongbum;Kim, Janghwan;Chung, Kyung-Sook
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.5.1-5.15
    • /
    • 2018
  • Targeting hair follicle regeneration has been investigated for the treatment of hair loss, and fundamental studies investigating stem cells and their niche have been described. However, knowledge of stem cell metabolism and the specific regulation of bioenergetics during the hair regeneration process is currently insufficient. Here, we report the hair regrowth-promoting effect of a newly synthesized novel small molecule, IM176OUT05 (IM), which activates stem cell metabolism. IM facilitated stemness induction and maintenance during an induced pluripotent stem cell generation process. IM treatment mildly inhibited mitochondrial oxidative phosphorylation and concurrently increased glycolysis, which accelerated stemness induction during the early phase of reprogramming. More importantly, the topical application of IM accelerated hair follicle regeneration by stimulating the progression of the hair follicle cycle to the anagen phase and increased the hair follicle number in mice. Furthermore, the stem cell population with a glycolytic metabotype appeared slightly earlier in the IM-treated mice. Stem cell and niche signaling involved in the hair regeneration process was also activated by the IM treatment during the early phase of hair follicle regeneration. Overall, these results show that the novel small molecule IM promotes tissue regeneration, specifically in hair regrowth, by restructuring the metabolic configuration of stem cells.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • 제54권10호
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting

  • Eun, Kiyoung;Ham, Seok Won;Kim, Hyunggee
    • BMB Reports
    • /
    • 제50권3호
    • /
    • pp.117-125
    • /
    • 2017
  • Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a "cancer heterogeneity" due to "CSC plasticity". A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity.

Induction of cardiomyocyte-like cells from hair follicle cells in mice

  • Yong-Hee Kim;Bang-Jin Kim;Seok-Man Kim;Sun-Uk Kim;Buom-Yong Ryu
    • International Journal of Molecular Medicine
    • /
    • 제43권5호
    • /
    • pp.2230-2240
    • /
    • 2019
  • Hair follicles (HFs) are a well-characterized niche for adult stem cells (SCs), and include epithelial and melanocytic SCs. HF cells are an accessible source of multipotent adult SCs for the generation of the interfollicular epidermis, HF structures and sebaceous glands in addition to the reconstitution of novel HFs in vivo. In the present study, it was demonstrated that HF cells are able to be induced to differentiate into cardiomyocyte-like cells in vitro under specific conditions. It was determined that HF cells cultured on OP9 feeder cells in KnockOut-Dulbecco's modified Eagle's medium/B27 in the presence of vascular endothelial growth factors differentiated into cardiomyocyte-like cells that express markers specific to cardiac lineage, but do not express non-cardiac lineage markers including neural stem/progenitor cell, HF bulge cells or undifferentiated spermatogonia markers. These cardiomyocyte-like cells exhibited a spindle- and filament-shaped morphology similar to that presented by cardiac muscles and exhibited spontaneous beating that persisted for over 3 months. These results demonstrate that SC reprogramming and differentiation may be induced without resulting in any genetic modification, which is important for the clinical applications of SCs including tissue and organ regeneration.

Oncogene-Driven Metabolic Alterations in Cancer

  • Min, Hye-Young;Lee, Ho-Young
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.45-56
    • /
    • 2018
  • Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.

Metabolic reprogramming of the tumor microenvironment to enhance immunotherapy

  • Seon Ah Lim
    • BMB Reports
    • /
    • 제57권9호
    • /
    • pp.388-399
    • /
    • 2024
  • Immunotherapy represents a promising treatment strategy for targeting various tumor types. However, the overall response rate is low due to the tumor microenvironment (TME). In the TME, numerous distinct factors actively induce immunosuppression, restricting the efficacy of anticancer immune reactions. Recently, metabolic reprogramming of tumors has been recognized for its role in modulating the tumor microenvironment to enhance immune cell responses in the TME. Furthermore, recent elucidations underscore the critical role of metabolic limitations imposed by the tumor microenvironment on the effectiveness of antitumor immune cells, guiding the development of novel immunotherapeutic approaches. Hence, achieving a comprehensive understanding of the metabolic requirements of both cancer and immune cells within the TME is pivotal. This insight not only aids in acknowledging the current limitations of clinical practices but also significantly shapes the trajectory of future research endeavors in the domain of cancer immunotherapy. In addition, therapeutic interventions targeting metabolic limitations have exhibited promising potential as combinatory treatments across diverse cancer types. In this review, we first discuss the metabolic barriers in the TME. Second, we explore how the immune response is regulated by metabolites. Finally, we will review the current strategy for targeting metabolism to not simply inhibit tumor growth but also enhance antitumor immune responses. Thus, we could suggest potent combination therapy for improving immunotherapy with metabolic inhibitors.

Cardiovascular Regeneration via Stem Cells and Direct Reprogramming: A Review

  • Choon-Soo Lee;Joonoh Kim;Hyun-Jai Cho;Hyo-Soo Kim
    • Korean Circulation Journal
    • /
    • 제52권5호
    • /
    • pp.341-353
    • /
    • 2022
  • Cardiovascular disease (CVD) is the leading causes of morbidity and death globally. In particular, a heart failure remains a major problem that contributes to global mortality. Considerable advancements have been made in conventional pharmacological therapies and coronary intervention surgery for cardiac disorder treatment. However, more than 15% of patients continuously progress to end-stage heart failure and eventually require heart transplantation. Over the past year, numerous numbers of protocols to generate cardiomyocytes (CMCs) from human pluripotent stem cells (hPSCs) have been developed and applied in clinical settings. Number of studies have described the therapeutic effects of hPSCs in animal models and revealed the underlying repair mechanisms of cardiac regeneration. In addition, biomedical engineering technologies have improved the therapeutic potential of hPSC-derived CMCs in vivo. Recently substantial progress has been made in driving the direct differentiation of somatic cells into mature CMCs, wherein an intermediate cellular reprogramming stage can be bypassed. This review provides information on the role of hPSCs in cardiac regeneration and discusses the practical applications of hPSC-derived CMCs; furthermore, it outlines the relevance of directly reprogrammed CMCs in regenerative medicine.