• 제목/요약/키워드: cell reprogramming

검색결과 149건 처리시간 0.019초

Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce

  • Park, Sojung;Nam, Eun woo;Kim, Yeeun;Lee, Seohyeon;Kim, Seul I;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1729-1738
    • /
    • 2020
  • Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.

OCT4B Isoform Promotes Anchorage-Independent Growth of Glioblastoma Cells

  • Choi, Sang-Hun;Kim, Jun-Kyum;Jeon, Hee-Young;Eun, Kiyoung;Kim, Hyunggee
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.135-142
    • /
    • 2019
  • OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 ($OCT4B^{19kDa}$) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of $OCT4B^{19kDa}$ promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, $OCT4B^{19kDa}$ may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.

Enhancing generation efficiency of liver organoids in a collagen scaffold using human chemically derived hepatic progenitors

  • Myounghoi Kim;Yohan Kim;Elsy Soraya Salas Silva;Michael Adisasmita;Kyeong Sik Kim;Yun Kyung Jung;Kyeong Geun Lee;Ji Hyun Shin;Dongho Choi
    • 한국간담췌외과학회지
    • /
    • 제27권4호
    • /
    • pp.342-349
    • /
    • 2023
  • Backgrounds/Aims: Liver organoids have emerged as a powerful tool for studying liver biology and disease and for developing new therapies and regenerative medicine approaches. For organoid culture, Matrigel, a type of extracellular matrix, is the most commonly used material. However, Matrigel cannot be used for clinical applications due to the presence of unknown proteins that can cause immune rejection, batch-to-batch variability, and angiogenesis. Methods: To obtain human primary hepatocytes (hPHs), we performed 2 steps collagenase liver perfusion protocol. We treated three small molecules cocktails (A83-01, CHIR99021, and HGF) for reprogramming the hPHs into human chemically derived hepatic progenitors (hCdHs) and used hCdHs to generate liver organoids. Results: In this study, we report the generation of liver organoids in a collagen scaffold using hCdHs. In comparison with adult liver (or primary hepatocyte)-derived organoids with collagen scaffold (hALO_C), hCdH-derived organoids in a collagen scaffold (hCdHO_C) showed a 10-fold increase in organoid generation efficiency with higher expression of liver- or liver progenitor-specific markers. Moreover, we demonstrated that hCdHO_C could differentiate into hepatic organoids (hCdHO_C_DM), indicating the potential of these organoids as a platform for drug screening. Conclusions: Overall, our study highlights the potential of hCdHO_C as a tool for liver research and presents a new approach for generating liver organoids using hCdHs with a collagen scaffold.

Efficient primary culture model of patient-derived tumor cells from colorectal cancer using a Rho-associated protein kinase inhibitor and feeder cells

  • HYE KYUNG HONG;DAE HEE PYO;TAE WON KIM;NAK HYEON YUN;YEO SONG LEE;SU JEONG SONG;WOO YONG LEE;YONG BEOM CHO
    • Oncology Letters
    • /
    • 제42권5호
    • /
    • pp.2029-20238
    • /
    • 2019
  • In vitro culture of patient-derived tumor cells offers many advantages in the development of novel therapies for colorectal cancer. Although various culture systems have been developed, the long-term expansion of patient-derived tumor cells remains challenging. The present results suggested that tumor cells isolated from colorectal cancer patient-derived xenografts can be efficiently immortalized in conditioned medium from irradiated feeder cells containing Y-27632, a rho-associated coiled-coil containing protein kinase (ROCK) inhibitor. Patient-derived tumor cells proliferated rapidly, reaching 90-95% confluence in ~6 days. Short tandem repeat analysis suggested that these tumor tissues and cultured cells presented 13 identical short tandem repeat loci, including Amelogenin, Penta E, Penta D, D2S1338 and D19S433. Their epithelial phenotype was confirmed by staining for epithelial cell adhesion molecule and cytokeratin 20, whereas vimentin was used as a mesenchymal marker. When cells were transferred to 3D cultures, they continued to proliferate, forming well-defined tumor spheroids. Expression levels of human telomerase reverse transcriptase and C-Myc mRNA were increased in cultured cells. Finally, immortalized cells were used for the screening of 65 anticancer drugs approved by the Food and Drug Administration, allowing the identification of gene-drug associations. In the present study, primary culture models of colorectal cancer were efficiently established using a ROCK inhibitor and feeder cells, and this approach could be used for personalized treatment strategies for patients with colorectal cancer.

ROCK 억제제를 통한 사람 치유두 조직 유래 단일 사람 유도만능줄기세포의 생존성 향상 (Improvement of Cell Viability Using a Rho-associated Protein Kinase (ROCK) Inhibitor in Human Dental Papilla derived Single-induced Pluripotent Stem Cells)

  • 심유진;강영훈;김현지;김미정;이현정;손영범;이성호;전병균
    • 생명과학회지
    • /
    • 제29권8호
    • /
    • pp.895-903
    • /
    • 2019
  • 이 연구는 단일 세포로 분리된 유도만능줄기세포(induced pluripotent stem cells, iPSCs)에 anoikis 세포사멸을 억제할 수 있는 Rho-associated protein kinase (ROCK)의 억제제를 처리하여 iPSCs의 세포 생존성을 향상하고자 하였다. Episomal plasmid 방법으로 확립된 iPSCs를 단일세포로 분리한 후, ROCK 억제제 Y-27632 dihydrochloride (Y-27632)를 0 uM, 0.5 uM, 1 uM, 2.5 uM, 5 uM, 7.5 uM 및 10 uM 농도별로 5주일 동안 각각 처리하였을 때, 5 uM 이상의 농도에서 세포의 생존율이 유의적으로 향상되었고, 10 uM의 Y-27632을 0일, 1일, 2일, 3일, 4일 및 5일 동안 처리하였을 때, Y-27632의 노출 기간이 길어질수록 세포의 생존율이 유의적으로 향상되는 것을 관찰하였다. 그러나, Y-27632의 노출 후, iPSCs의 형태학적 분화가 관찰되어 10 uM의 Y-27632에서 5일 동안 iPSCs에 처리 한 후, 줄기세포학적인 특성을 비교 조사하였다. 우선, octamer-binding transcription factor 4 (OCT-4), homeobox protein NANOG (NONOG) 및 SRY-box 2 (SOX-2) 줄기세포 특이 유전자의 발현은 Y-27632를 처리한 실험군은 Y-27632를 처리하지 않은 대조군에서 서로 유의적인 차이를 나타내지 않았다. 또한, Y-27632를 처리한 실험군은 Y-27632를 처리하지 않은 대조군과 비교하여 telomerase 활성과 이것의 활성과 관련된 telomerase reverse transcriptase (TERT) 및 telomerase RNA component (TERC)의 유전자 발현에는 유의적인 차이가 없었다. 이상의 결과로 보아, iPSCs에 Y-27632를 처리하였을 때, iPSCs의 줄기세포의 특정을 유지하면서 anoikis에 의한 세포사멸을 감소시켜 세포 생존율이 증가한다는 것을 알 수 있었다.

중추신경계 질환의 진단과 치료를 위한 엑소좀의 활용 (Application of Exosome for Diagnosis and Treatment of Diseases in the Central Nervous System)

  • 박지아;최윤식
    • 생명과학회지
    • /
    • 제33권9호
    • /
    • pp.754-765
    • /
    • 2023
  • 엑소좀은 단백질, mRNA 및 miRNA를 포함하고 모든 유형의 세포에서 분비되는 세포 외 소포의 일종이다. 방출된 엑소좀은 인접하거나 멀리 있는 다른 세포에 의해 선택적으로 흡수되어 그 내용물을 방출하고 표적 세포를 재프로그래밍한다. 엑소좀은 세포에 의해 생성되는 작은 천연 소포이므로 무독성과 비면역원성의 특징이 있는 것으로 받아들여지고 있다. 최근에는 엑소좀이 중추신경계에 대한 약물 전달체로 과학적 관심을 받고 있다. 중추신경계에는 약물의 침투를 어렵게 하는 혈뇌장벽이 있고 이는 퇴행성신경질환의 치료제 개발에 큰 걸림돌이 되어왔다. 그러나 축적된 연구결과들을 볼 때, 엑소좀이 주로 트랜스사이토시스를 통해 혈뇌장벽을 통과할 수 있음이 제시되었다. 이러한 결과를 종합하면, 엑소좀은 혈뇌장벽을 넘어 뇌 실질조직에 약물을 전달할 수 있는 새로운 전달 수단이 될 것으로 기대된다. 또한 세포의 종류와 질병상태에 따라 분비되는 엑소좀의 종류가 다르기 때문에 엑소좀은 중추신경계 질환의 진단을 위한 바이오마커로도 활용될 수 있다. 본 총설 논문에서는 중추신경계 질환에 대한 바이오마커 및 치료 옵션으로서의 임상시험을 포함한 엑소좀에 대한 최근 연구동향을 정리하였다.

돼지 체세포복제 35일령 태아에서 H19 메틸화 가변 영역의 DNA 메틸화 변화 (DNA Methylation Change of H19 Differentially Methylated Region (DMR) in Day 35 of Cloned Pig Fetuses)

  • 고응규;임기순;황성수;오건봉;우제석;조상래;최선호;이풍연;연성흠;조재현
    • 한국수정란이식학회지
    • /
    • 제26권1호
    • /
    • pp.79-84
    • /
    • 2011
  • This study was performed to identify the differentially methylated region (DMR) and to examine the mRNA expression of the imprinted H19 gene in day 35 of SCNT pig fetuses. The fetus and placenta at day 35 of gestation fetuses after natural mating (Control) or of cloned pig by somatic cell nuclear transfer (SCNT) were isolated from a uterus. To investigate the mRNA expression and methylation patterns of H19 gene, tissues from fetal liver and placenta including endometrial and extraembryonic tissues were collected. The mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. Bisulfite analyses demonstrated that the differentially methylated region (DMR) was located between -1694 bp to -1338 bp upstream from translation start site of the H19 gene. H19 DMR (-1694 bp to -1338 bp) exhibits a normal mono allelic methylation pattern, and heavily methylated in sperm, but not in oocyte. In contrast to these finding, the analysis of the endometrium and/or extraembryonic tissues from SCNT embryos revealed a complex methylation pattern. The DNA methylation status of DMR Region In porcine H19 gene upstream was hypo methylated in SCNT tissues but hypermethylated in control tissues. Furthermore, the mRNA expression of H19 gene in liver, endometrium, and extraembryonic tissues was significantly higher in SCNT than those of control (p<0.05). These results suggest that the aberrant mRNA expression and the abnormal methylation pattern of imprinted H19 gene might be closely related to the inadequate fetal development of a cloned fetus, contributing to the low efficiency of genomic reprogramming.

GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells

  • Jeonghyeon Moon;Seung Hoon Lee;Seon-yeong Lee;Jaeyoon Ryu;Jooyeon Jhun;JeongWon Choi;Gyoung Nyun Kim;Sangho Roh;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.40.1-40.15
    • /
    • 2020
  • The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM-19 OVN. GRIM19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.

Genome-Wide Analysis of DNA Methylation before- and after Exercise in the Thoroughbred Horse with MeDIP-Seq

  • Gim, Jeong-An;Hong, Chang Pyo;Kim, Dae-Soo;Moon, Jae-Woo;Choi, Yuri;Eo, Jungwoo;Kwon, Yun-Jeong;Lee, Ja-Rang;Jung, Yi-Deun;Bae, Jin-Han;Choi, Bong-Hwan;Ko, Junsu;Song, Sanghoon;Ahn, Kung;Ha, Hong-Seok;Yang, Young Mok;Lee, Hak-Kyo;Park, Kyung-Do;Do, Kyoung-Tag;Han, Kyudong;Yi, Joo Mi;Cha, Hee-Jae;Ayarpadikannan, Selvam;Cho, Byung-Wook;Bhak, Jong;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.210-220
    • /
    • 2015
  • Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethy-lated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.