• Title/Summary/Keyword: cell radius

Search Result 175, Processing Time 0.024 seconds

Analysis on Compatibility between wireless headset and WiFi in ISM bands (ISM 대역에서 무선 헤드셋과 WiFi 간의 양립성 분석)

  • Cho, In-Kyoung;Kim, Tae-Youn;Jang, Jae-Woong;Jang, Kyung-Duk;Moon, Guee-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.272-278
    • /
    • 2015
  • This paper analyzed interference impact between wireless headset and Wireless Fidelity which get a high possibility of simultaneously operating in the Industry Science Medical(ISM) bands. Analysis methods of Minimum Coupling Loss(MCL) and Monte Carlo(MC) were applied by using the characters and parameters referenced to Institute of Electrical and Electronic Engineers(IEEE) 802.11b. The protection distance between interferer (WiFi transmitter) and victim (Wireless headset receiver) was calculated through the MCL. The protection distance was obtained for the case of single interferer, and the maximum allowable number of multiple interferers was computed according to the cell radius of a victim system to meet 5 % below of interference probability by using a statistical analysis based on the MC method. The analysis results are expected to be used as a guideline to coexist the wireless headset and low power devices in the ISM band.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials (Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가)

  • Kim, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Evaluation of the CO2 Storage Capacity by the Measurement of the scCO2 Displacement Efficiency for the Sandstone and the Conglomerate in Janggi Basin (장기분지 사암과 역암 공극 내 초임계 이산화탄소 대체저장효율 측정에 의한 이산화탄소 저장성능 평가)

  • Kim, Seyoon;Kim, Jungtaek;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2016
  • To evaluate the $CO_2$ storage capacity for the reservoir rock, the laboratory scale technique to measure the amount of $scCO_2$, replacing pore water of the reservior rock after the $CO_2$ injection was developed in this study. Laboratory experiments were performed to measure the $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin, which are classified as available $CO_2$ storage rocks in Korea. The high pressurized stainless steel cell containing two different walls was designed and undisturbed rock cores acquired from the deep drilling site around Janggi basin were used for the experiments. From the lab experiments, the average $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin was measured at 31.2% and 14.4%, respectively, which can be used to evaluate the feasibility of the Janggi basin as a $scCO_2$ storage site in Korea. Assuming that the effective radius of the $CO_2$ storage formations is 250 m and the average thickness of the conglomerate and the sandstone formation under 800 m in depth is 50 m each (from data of the drilling profile and the geophysical survey), the $scCO_2$ storage capacity of the reservoir rocks around the probable $scCO_2$ injection site in Janggi basin was calculated at 264,592 metric ton, demonstrating that the conglomerate and the sandstone formations in Janggi basin have a great potential for use as a pilot scale test site for the $CO_2$ storage in Korea.