• Title/Summary/Keyword: cell production

Search Result 8,058, Processing Time 0.034 seconds

Glucose Effects on Cell Growth, Antibody Production, and Cell Metabolism of Hybridoma Cells (Hybridoma 세포의 세포성장, 항체생산 및 세포대사에 미치는 Glucose의 영향)

  • ;Shaw S.Wang
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.323-334
    • /
    • 1995
  • The effects of glucose on cell growth kinetics, monoclonal antibody productivity, and cell metabolism or hybridoma cells were investigated. The mouse-mouse hybridoma cell line VIII H-8 producing mouse IgG2a was used as a modal system. Glucose showed substrate inhibition type dependence on specific growth raie. The maximum cell density increased as initial glucose concentration increased up to 4 g/$\ell$. Glucose showed a strong influence on cell death kinetics, and an inverse relationship between specific death rate and glucose concentration was found. Cell viability and monoclonal antibody production increased as initial glucose concentration increased. The specific glucose consumption rate increased with glucose concentration, and cumulative specific lactate production rate increased with increasing initial glucose concentration. The overall kinetics of ammonium ion production was almost invariant with respect to initial glucose concentration, while the cumulative specific ammonium ion production rate was dependent on initial glucose concentration.

  • PDF

Enhanced Production of hGM-CSF by Immobilized Transgenic Plant Cell Cultures (형질전환된 식물세포에서 고정화 방법을 통한 hCM-CSF의 생산성 증대 연구)

  • Noha, Yun-Sook;Nama, Hyung-Jin;Choi, Hong-Yeol;Tak, Sa-Ra;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • Plant cell immobilization can protect plant cells from shear forces and increase the stability of gene. An additional advantage of immobilization is the easiness for performing continuous culture with cell recycling. Therefore plant cell immobilization can overcome the limitations of plant cell applications. In addition, target protein should be selected from pharmaceutical proteins to get rid of low expression level problem. The enhanced production of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was investigated in immobilized Nicotiana tabacum suspension cell cultures. When the cells were immobilized in polyurethane foam, specific production of hGM-CSF was higher than that in alginate bead immobilization. Optimum continuous culture condition was the addition of 60 g/L sucrose in growth media with exchanging media every 6 day. Under the same condition, specific hGM-CSF production was 7 times higher in a 500-mL spinner flask than that in 100-mL Erlenmeyer flasks. Therefore, development of an effective immobilization process would be possible when the advantage of easy cell recycling was used. Consequently, enhanced production of target proteins could be possible in immobilized continuous cultures when the advantages of immobilization were applied.

High-Level Production of Astaxanthin by Fed-Batch Culture of Mutant Strain Phaffia rhodozyma AJ-6-1

  • KIM, SU-JIN;GEUN-JOONG KIM;DON-HEE PARK;YEON-WOO RYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.175-181
    • /
    • 2003
  • The production of a carotenoid astaxanthin, a growth-associated principal pigment, is limited in a batch cultivation, because a high glucose concentration severely inhibits the cell growth and also influences the carotenoid production. Therefore, a fermentation strategy including effective chemicals for the high-level production of cells and astaxanthin by a mutant strain Phaffia rhodozyma AJ-6-1 was developed in a fed-batch culture. First, a production medium for maximizing the cell and astaxanthin yields was formulated and optimized. Using this optimized medium, the highest cell and astaxanthin concentrations obtained were about 38.25 g/1 and 34.77 mg/1, respectively. In addition, an attempt was made to increase the amount of astaxanthin using effective chemicals such as ethanol and acetic acid, which are known at an inducer and/or precursor of carotenoid synthesis. When either 10g/1 ethanol or 5 g/1 acetic acid was added to investigate the resulting astaxanthin content, a relatively high astaxanthin concentration or 45.62 mg/l and 43.87 mg/1, respectively, was obtained, and the cell concentrations also increased slightly under these conditions. Therefore, these results imply that a fed-batch culture of the mutant strain P. rhodozyma AJ-6-1 could be effectively employed in the commercial production of astaxanthin, although the factors affecting the productivity remain to be elucidated.

Characterization of Cell Growth and Camptothecin Production in Cell Cultures of Camptotheca acuminata

  • Song, Seung-Hoon;Byun, Sang-Yo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.631-638
    • /
    • 1998
  • Studies were made to elucidate the cell growth and the production of camptothecin and its derivatives in cell cultures of Camptotheca acuminata. High resolution HPLC chromatograms to analyze camptothecin and 10-hydroxycamptothecin in lactone and carboxylate forms were obtained with a fluorescence detector. Calli inductions were optimized with the young stem of explant on Schenk and Hildebrandt (SH) medium supplemented with 5 mg/l $\alpha$-naphthaleneacetic acid (NAA), 0.2 mg/l 6-benzylamino purine (BAP), 2.0% sucrose, and 0.5% agar. The hybrid medium, a mixture of SH and Murashige and Skoog (MS) salts, was developed for homogeneous suspension cultures without large cell aggregates. The optimum phytohormone concentrations for successful suspension cultures were 1.0mg/l of 2,4-D and 0.5 mg/l of kinetin. The highest growth in suspension cultures was observed when 49.7% (w/w) of the cells was composed of small aggregates which were below 0.1 mm in diameter. Time course changes of cell growth and camptothecin production showed that camptothecin accumulation was started at the end of the growth phase and the maximum content was obtained 10 days after inoculation. Yeast extract elicitor increased camptothecin accumulation 4 times. Methyl jasmonate and jasmonic acid also increased camptothecin production 6 and 11 times, respectively.

  • PDF

Effect of Nitrogen, Phosphate and Cell Immobilization on Taxol Production from Cell Cultures of Taxus cuspidata (주목 (Taxus cuspidata) 세포배양에서 질소원, 인산, 세포고정화가 Taxol 생산에 미치는 영향)

  • Park, Jong-Hwa;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.308-312
    • /
    • 1995
  • The effects of nitrogen, phosphate in modified B5 medium and cell immobilization on cell growth and taxol production were investigated using cell cultures of Taxus cuspidata. The ratio of nitrate to ammonium was found to be an important parameter. The ratio of 1 increased taxol production 10-fold, compared to the original ratio of 20 in modified B5 medium. Reducing phosphate concentration inhibited cell growth, but increased taxol production noticeably. Immobilized cells produced a taxol concentration of ${\sim}120\;g/l$

  • PDF

Effects of Sucrose level and Nitrogen Source on Fresh Weight and Anthocyanin Production in Cell Suspension Culture of 'Sheridan' Grape (Vitis spp.)

  • Kim, Seung-Heui;Kim, Seon-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.23-27
    • /
    • 2002
  • To establish an in vitro mass production system of grape anthocyanin pigments through callus and cell suspension culture, the effects of nitrogen source and sucrose on fresh weight and anthocyanin production in cell suspension culture of 'Sheridan' grape level were studied. When the medium was devoid of $NO_3^-$, cell fresh weight was either remained stable (1% sucrose) or slightly decreased with culture time (2,3, and 4% sucrose). When $NH_4^-$ was lacking, 3% sucrose was most favorable for cell growth. When $NH_4^-$ was supplied as N source, the anthocyanin content of 2% sucrose containing medium was maintained 2 times higher than other levels till day 8 in culture, then that of 3 and 4% sucrose which peaked at day 12 thereafter. The anthocyanin content was low than $NO_3^-$-free media. Total anthocyanin content in $NH_4^-$-free medium was just about a half of that of $NH_4^+$ medium. Anthocyanin production of 2% sucrose in $NH_4^+$ medium was maintained about 3-fold till day 8, then decreased thereafter. In $NH_4^+$ medium, pH decreased gradually with final pH of 3.5 to 4.0, while pH in $NH_4^+$-free medium increased with final pH of 6.5 to 7.5.

Characteristics of Recombinant CHO Cell Growth and Erythropoietin Production in Serum-Containing Media and Serum-Free Media (혈청배지와 무혈청배지에서의 재조합 CHO 세포 성장과 Erythropoietin 생산)

  • 변태호;전복환
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.288-294
    • /
    • 1996
  • We have investigated the characteristics of recombinant CHO cell growth and erythropoletin(EPO) production at different concentrations of serum and inoculation density. Cell growth and EPO production were increased with the increase of serum concentration and inoculation density. Enhancement of CHO cell growth and EPO production by medium exchange using serum-free medium at the growth phase of cells was studied. It was found that the exchange of culture medium with serum-free medium was favorable for growth of cells and production of EPO. The maximum number of cell and concentration of EPO obtained by exchanging culture medium were $6.2{\times}105cells/$\textrm{cm}^2$ and 7,470units/m1, respectively, compared to $2.1{\times}105cells/\textrm{cm}^2$ and 2,380units/m1 in serum-containing medium without medium exchange. It was observed that CHO cell growth was correlated with EPO production in serum-free media.

  • PDF

Effect of DDT on Testosterone Production by Modulator Aromatase (CYP 19) in R2C

  • Lee, Kyung-Jin;Lee, Jong-Bin;Jeong, Hye-Gwang
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.308-312
    • /
    • 2003
  • Various pesticides known or suspected to interfere with steroid hormone function were screened toy effects in leydig cells on catalytic activity and mRNA expression of aromatase. Dichlorodiphenyltrichloroethane (DDT) is a widespread environmental pollutant. In this study, we investigated the effect of DDT on testosterone production through aromatase activity and its molecular mechanism in testicular leydig cell, R2C by using radioimmunoassay (RIA). As the results, the potent leydig: cell activator LH increased testosterone production compared to the control. DDT exposure significantly decreased testosterone production in R2C cell. In addition, DDT was found to increase aromatase gene expression and activity in R2C cell in a dose dependent manner. In order to assess whether the suppressive effects of DDT on LH-inducible testosterone (T) production might be influenced by the ER, ICI 182.780 was used, and it was found that these inhibitory effects of DDT were antagonized by ICI 182.780, implying that the estrogen receptor (ER) mediates the suppressive effects of DDT. Furthermore, the inducible effects of DDT on aromatase gene expression might be influenced by the ER, ICI 182.780 was used, and it was found that these enhancing effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the inducible effects of DDT. Our results indicated that DDT inhibition of luteinizing hormone (LH) -inducible T production in R2C cell is mediated through aromatase. However, the precise mechanisms by which DDT enhance in R2C cell remains unknown. The current study suggests the possibility that DDT might act as a modulator aromatase gene transcription.

Effect of Environmental Factors on Flavonol Glycoside Production and Phenylalanine Ammonia-lyase Activity in Cell Suspension Cultures of Ginkgo biloba

  • Kim, Min-Soo;Lee, Won-Kyu;Kim, Hwa-Young;Kim, Chul;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.237-244
    • /
    • 1998
  • A study was carried out to elucidate the relation between the production of flavonol glycosides and the change of phenylalanine ammonia-lyase activity in cell suspension cultures of Ginkgo biloba by the unassisted and synergistic effects of various factors. The quercetin production showed a mixed-growth-associated pattern in cell suspension cultures. Fluorescent light and UV radiation increased phenylalanine ammonia-lyase (PAL) activity, and resulted in the increase of the production of quercetin and kaempferol ten- and four-fold, respectively, as compared to that obtained in the normal culture condition. The cell growth of Ginkgo biloba was enhanced .at higher temperatures whereas the quercetin production was at its maximum at low temperatures. Moreover, the quercetin production was increased by temperature change during the culture period. In particular, the quercetin production was at the highest level when the culture temperature was elevated from $10^{\circ}C\;to\;30^{\circ}C$. The addition of phenylalanine as a precursor in the culture medium stimulated an 8-fold increase in the production of quercetin; the addition of naringenin caused a l0-fold increase. The quercetin production was also greatly increased by feeding enzyme cofactors such as 2-ketoglutarate and ascorbic acid in the culture medium, but specific PAL activity was not increased except with phenylalanine feeding. The synergistic effect of UV radiation and naringenin feeding was observed, resulting in the increase of flavonol glycoside production at a rate higher than in any other case investigated.

  • PDF

The Effect of Light on the Production of Reserpine in Cultured Rauwolfia serpentina Cells

  • Yamamoto, Osamu
    • Natural Product Sciences
    • /
    • v.2 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • When reserpine-producing cell strains of Rauwolfia serpentina were transferred from the dark to the light irradiation, the production of reserpine was extremely enhanced whereas the cell growth was suppressed. In an incubation period of 20 days, the most effective culture condition for reserpine production was the combination of 8 days of dark culture and following 12 days of light culture. The time courses of both cell growth and reserpine production were measured in vitro in order to clarify the effect of wave length range of light on the biosynthesis of reserpine. Although the growth of cultured cells which had been incubated under continuous red, yellow, and green lights, respectively, was similar to that of the cultured cells subcultured in the dark. The cells cultured under red light irradiation produced less reserpine than dark-grown cultures. Both blue and near-ultraviolet light inhibited the growth of cultured cells. The production of reserpine was strikingly enhanced by blue light, but was strongly inhibited by near-ultraviolet light.

  • PDF