• Title/Summary/Keyword: cell production

Search Result 8,058, Processing Time 0.035 seconds

Improved Production of Live Cells of Lactobacillus rhamnosus by Continuous Cultivation using Glucose-yeast Extract Medium

  • Ling Liew Siew;Mohamad Rosfarizan;Rahim Raha Abdul;Wan Ho Yin;Ariff Arbakariya Bin
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.439-446
    • /
    • 2006
  • In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates $(0.05 h^{-1}\;to\;0.40h^{-1})$ using a 2L stirred tank fermenter with a working volume of 600ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, ${\mu}_{max}$, was estimated at $0.40h^{-1}$I, and the Monod cell growth saturation constant, Ks, at approximately 0.25g/L. Maximum cell viability $(1.3{\times}10^{10}CFU/ml)$ was achieved in the dilution rate range of $D=0.28h^{-1}\;to\;0.35h^{-1}$. Both maximum viable cell yield and productivity were achieved at $D=0.35h^{-1}$. The continuous cultivation of L. rhamnosus at $D=0.35h^{-1}$ resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.

The importance of post-thaw subculture for standardizing cellular activity of fresh or cryopreserved mouse embryonic stem cells

  • Ko, Dong Woo;Yoon, Jung Ki;Ahn, Jong il;Lee, Myungook;Yang, Woo Sub;Ahn, Ji Yeon;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 2018
  • Objective: Remarkable difference in cellular activity was found between early and late subpassaged embryonic stem cell (ESCs) lines, which can be created by subtle changes in cell manipulation protocol. This study subsequently examined whether post-thaw subculture of early subpassaged ESC lines could further affect the activity of the ESCs. Methods: Fresh (as a control treatment) or cryopreserved F1 hybrid (B6CBAF1) early ESC lines (C57BL/6xCBA) of the 4 (P4) or the 19 passage (P19) were subcultured once, twice or six times under the same condition. The post-thaw survival of the ESCs was monitored after the post-treatment subculture and the ability of cell proliferation, reactive oxygen species (ROS) generation, apoptosis and mitochondrial ATP synthesis was subsequently examined. Results: Regardless of the subculture number, P19 ESCs showed better (p<0.05) doubling time and less ATP production than P4 ESCs and such difference was not influenced by fresh or cryopreservation. The difference between P4 and P19 ESC lines became decreased as the post-treatment subculture was increased and the six times subculture eliminated such difference. Similarly, transient but prominent difference in ROS production and apoptotic cell number was detected between P4 and P19 ESCs only at the 1st subculture after treatment, but no statistical differences between two ESC lines was detected in other observations. Conclusion: The results of this study suggest that post-thaw subculture of ESCs under the same environment is recommended for standardizing their cellular activity. The activity of cell proliferation ability and ATP synthesis can be used as parameters for quality control of ESCs.

Cytokines Regulate the Expression of the Thymus and Activation-Regulated Chemokine (TARC; CCL17) in Human Skin Fibroblast Cells

  • Lee, Ji-Sook;Kim, In-Sik;Kim, Dong-Hee;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Allergic inflammation is thought to be a Th2 cell-dominant immune response during which tissue-resident fibroblasts produce chemokines which contribute to the recruitment of migratory leukocytes to sites of tissue injury. Thymus and activation-regulated chemokine (TARC; CCL17) is a potent member of the CC chemokine family and a selective chemoattractant for Th2 cells. In order to study the regulatory profiles of TARC production by $TNF-{\alpha}$, $IFN-{\gamma}$, and Il-4 in human normal skin fibroblast, CCD-986sk cell line was used. The expression of TARC protein was measured using ELISA, and mRNA level was detected by RT-PCR. The combination of $TNF-{\alpha}$ and IL-4 induced a time-and dose-dependent synergistic increase in the expression of TARC at both protein and mRNA levels in the cultured human skin fibroblasts. Exposure of the cells to single cytokine had no effect on TARC expression. The high concentration (100 ng/ml) and long incubation time (72 h) of $IFN-{\gamma}$ further enhanced the TARC production induced by $TNF-{\alpha}$/lL-4 in the skin fibroblast. This synergistic effect of Th1 and Th2 type cytokines on TARC production by skin fibroblasts may contribute to the inflammatory cell infiltration and tissue damage with allergic inflammation.

A Study on the Design of the Source Driver and the Flexible Display with an Electrowetting Cell Structure (전기습윤셀 구조를 갖는 플렉서블 디스플레이와 소스 드라이버 설계에 관한 연구)

  • Kim, Hoon-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.149-156
    • /
    • 2012
  • The Fabric Electrode was proposed for the effective production of the display based on electrowetting in this paper and designed the source driver of flexible display which could be driven by the electrowetting cell. The electrowetting cell matrix was implemented on the substrate(PET) by imprinting. The driver fabric, wetting electrode fabric and conductive fabric was placed horizontally and vertically in the groove between cell matrix and the electrowetting cell matrix can be driven by the cross-point as electric connection. The integration density of driver module is decreased because using the R/2R DAC module per channel in the conventional method. The proposed method could utilize the effective production process and reduce the production price of a display panel. The source driver which consume lower power and can increase the integration density because of reducing the number of driver device per channel was designed and evaluate the driver operation by the simulation using the VHDL programming in this paper.

The Preventive Effect of 5-Iodo-6-Amino-1,2-Benzopyrone on Apoptosis of Rat Heart-derived Cells induced by Oxidative Stress

  • Kyoumg A Chung;Ji Seung Back;Jae Hyun Jang
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • Ischemia-reperfusion results in excess reactive oxygen species (ROS) that affect myocardial cell damage. ROS production inhibition is effectively proposed in treating cardiovascular diseases including myocardial hypertrophy. Studies have shown that oxidizing cultured cells in in vitro experiments gradually decreases the permeability of mitochondrial membranes time- and concentration-dependent, resulting in increased mitochondrial membrane damage due to secondary ROS production and cardiolipin loss. However, recent studies have shown that 5-iodo-6-amino-1,2-benzopyrone (INH2BP), an anticancer and antiviral drug, inhibited peroxynitrite-induced cell damage in in vitro and alleviated partial or overall inflammation in animal experiments. Therefore, in this paper, we studied the preventive effect of INH2BP on H9c2 cells derived from mouse heart damaged by oxidative stress using 700 μM of hydrogen peroxide. As a result of oxidative stress to H9c2 cells by hydrogen peroxide whether the treatment of INH2BP or not, hydrogen peroxide caused serious damage in H9c2 cells. These results were confirmed with cell viability and Hoechst 33342 assays. And this damage was through cell death. However, it was confirmed that H9c2 cells pretreated with INH2BP significantly reduced cell death by hydrogen peroxide. In addition, measurements with DCF-DA assay to determine whether ROS is produced in H9c2 cells treated with only hydrogen peroxide produced ROS significantly, but H9c2 cells pretreated with INH2BP significantly reduced ROS production by hydrogen peroxide. Taken together, it is believed that INH2BP can be useful for the prevention and treatment of cardiovascular diseases induced through oxidative stress such as heart damage caused by ischemia/reperfusion.

In vitro analysis of antiviral immune response against avian influenza virus in chicken tracheal epithelial cells

  • Jubi Heo;Thi Hao Vu;CH Kim;Anh Duc Truong;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.37 no.12
    • /
    • pp.2009-2020
    • /
    • 2024
  • Objective: Avian influenza virus (AIV) infections first affect the respiratory tract of chickens. The epithelial cells activate the host immune system, which leads to the induction of immune-related genes and the production of antiviral molecules against external environmental pathogens. In this study, we used chicken tracheal epithelial cells (TECs) in vitro model to investigate the immune response of the chicken respiratory tract against avian respiratory virus infections. Methods: Eighteen-day-old embryonic chicken eggs were used to culture the primary chicken TECs. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry (ICC) analysis of epithelial cell-specific gene makers were performed to confirm the characteristics, morphology, and growth pattern of primary cultured chicken TECs. Moreover, to investigate the cellular immune response to AIV infection or polyinosinic-polycytidylic acid (poly [I:C]) treatment, the TECs were infected with the H5N1 virus or poly (I:C). Then, immune responses were validated by RT-qPCR and western blotting. Results: The TECs exhibited polygonal morphology and formed colony-type cell clusters. The RT-qPCR results showed that H5N1 infection induced a significant expression of antiviral genes in TECs. We found that TECs treated with poly (I:C) and exposed to AIV infection-mediated activation of signaling pathways, leading to the production of antiviral molecules (e.g., pro-inflammatory cytokines and chemokines), were damaged due to the loss of junction proteins. We observed the activation of the nuclear factor kappa B and mitogen-activated protein kinase (MAPK) pathways, which are involved in inflammatory response by modulating the release of pro-inflammatory cytokines and chemokines in TECs treated with poly (I:C) and pathway inhibitors. Furthermore, our findings indicated that poly (I:C) treatment compromises the epithelial cell barrier by affecting junction proteins in the cell membrane. Conclusion: Our study highlights the utility of in vitro TEC models for unraveling the mechanisms of viral infection and understanding host immune responses in the chicken respiratory tract.

Suppressive Effects of Ethyl Acetate Fraction from Green Tea Seed Coats on the Production of Cell Adhesion Molecules and Inflammatory Mediators in Human Umbilical Vein Endothelial Cells (Human Umbilical Vein Endothelial Cells에서 녹차씨껍질 에틸아세테이트 추출물의 세포부착물질 및 염증매개인자 생성 억제효과)

  • Noh, Kyung-Hee;Kim, Jong-Kyung;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.635-641
    • /
    • 2011
  • Anti-atherogenic effects in tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated human umbilical vein endothelial cells (HUVEC) are involved with suppressed oxidative stress, cell adhesion molecules, and pro-inflammatory factors. The aim of this study was to determine whether green tea seed coat ethyl acetate fraction (GTSCE) could modulate cell adhesion molecules and inflammatory mediators in HUVEC stimulated with TNF-${\alpha}$. Nitric oxide (NO) production was significantly increased in TNF-${\alpha}$-stimulated HUVEC compared to TNF-${\alpha}$ only treated cells. The NO that is produced by endothelial nitric oxide synthase dilates blood vessels and has protective effects against platelet and leucocyte adhesion. GTSCE at 25, 50, 75, and $100\;{\mu}g$/mL significantly (p<0.05) reduced TNF-${\alpha}$ production. GTSCE significantly (p<0.05) inhibited soluble vascular cell adhesion molecule-1 level, in a dose-dependent manner. Monocyte chemoattractant protein-1 level was also significantly (p<0.05) inhibited by GTSCE treatment at $75\;{\mu}g$/mL compared to the TNF-${\alpha}$-only treated group. Total antioxidant capacity by GTSCE was significantly (p<0.05) enhanced compared to the TNF-${\alpha}$-only treated group. These results suggest that GTSCE can inhibit the production of cell adhesion molecules and inflammatory mediators and could be used as a candidate bioactive material to prevent the development of atherosclerosis.

Effect of Glycyrrhizae Radix on the Immune Responses(II) - Immuno-regulatory Action of Glycyrrhizin and Glycyrrhetinic Acid - (감초가 면역반응에 미치는 영향(II) - Glycyrrhizin 및 Glycyrrhetinic acid의 면역조절작용 -)

  • 한종현;오찬호;은재순
    • YAKHAK HOEJI
    • /
    • v.35 no.3
    • /
    • pp.174-181
    • /
    • 1991
  • These experiments were conducted to investigate the effects of glycyrrhizin(GL) and glycyrrhetinic acid(GA) on histamine synthesis, lymphocyte blastogenesis in C57BL/6J mice splenocytes, IL-1 production, $Ca^{2+}$ uptake by macrophage-like P388D$_{1}$ cells and plaque forming cell assay against SRBC. Histamine contents, lymphocyte blastogenesis, IL-1 activity, $Ca^{2+}$ uptake and plaque forming cell were determined by enzyme isotope method, [sup 3/H]-thymidine incorporation, C3H/HeJ mouse thymocytes proliferation, the addition of 5 $\mu$Ci/ml $^{45}$Ca$^{2+}$ to P388D$_{1}$, cell suspension and assay to sheep red blood cell, respectively. Cytotoxicity, which was expressed as 50% mortality, was occurred by the addition of GL(10$^{-3}$M) and GA(10$^{-4}$M). Histamine production in mouse spleen cell culture was significantly increased by the addition of 0.25 $\mu\textrm{g}$/ml of Con A, after 48 hour incubation. Con A dependent T-lymphocyte proliferation was also enhanced by the addition of 0.25 .mu.g/ml of Con A. The effects of GL on histamine contents and T-lymphocyte proliferation were significantly decreased at high dose (10$^{-5}$M), while IL-1 activity was remarkably suppressed by 10$^{-8}$~10$^{-4}$M of GL. $Ca^{2+}$ uptake was not changed, but antibody production was increased by GL(10 mg/kg). GA inhibited histamine contents at 10$^{-9}$~10$^{-7}$ and depressed Con A (0.25 $\mu\textrm{g}$/ml) dependent T-lymphocyte proliferation at 10$^{-7}$~10$^{-5}$M of GA, but increased suboptimal dose (Con A 0.1 $\mu\textrm{g}$/ml) at 10$^{-9}$~10$^{-7}$M of GA. IL-1 activity was suppressed by 10$^{-8}$~10$^{-4}$M of GA and $Ca^{2+}$ uptake was enhanced by 10$^{-9}$~10$^{-6}$ of GA, but antibody production was not changed by GA. From the above results, it is suggested that GL and GA have immuno-regulatory action. GL decreased cell-mediated immune response, and increased humoral immune response at high dose. On the other hand, low dose of GA enhanced cell-mediated immune response, while high doses of GA decreased humoral immune reaction.

  • PDF

Effect of pH and Temperature on the Production of Biosurfactant by Pseudomonas aeruginosa YPJ-80 and Its Separation (Pseudomonas aeruginosa YPJ-80에 의한 생물계면활성제 생산에 미치는 pH 및 온도의 영향과 생물계면활성제의 분리)

  • 박창호;손창규;김성훈;안도균
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.511-517
    • /
    • 1998
  • Temperature and pH conditions were studied for an effective biosurfactant production by Pseudomonas aeruginosa YPJ-80. Efficient methods of biosurfactant separation were also investigated. pH-uncontrolled experiments at 35$^{\circ}C$ and an initial pH of 8 resulted in the best cell growth (3.6 g/L) and biosurfactant production (0.073 g biosurfactant/g cell). Biosurfactant separation was most efficient using solvent extraction with chloroform/methanol (2:1 vol%) followed by acidification using 1N HCl.

  • PDF

Immunomodulating Activity of Alginate (Alginate의 면역조절작용)

  • 손은화;윤연숙;표석능
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.377-384
    • /
    • 1999
  • Alginates are polysaccharides with gel-forming properties composed of 1,4-linked $\beta$-D-mannuronic acid (M), $\alpha$-L-guluronic acid (G), and alternating (MG) blocks. The M-and the MG-blocks, but not the G-blocks, have been known to be the active components of the alginates in experimental models. In this study, we have examined the ability of high M-alginate to activate immune cells. Alginate induced the macrophage anti-viral activity and the lymphocyte blastogenesis, and enhanced cytotoxicity of natural killer cell. In addition, alginates stimulated the macrophages to induce the production of $H_{2}O_{2}$, whereas alginates had no effect on NO production and suppressed the production of TNF-$\alpha$. These findings suggest that high M-alginate may be modulating various elements of the host immune response.

  • PDF