• Title/Summary/Keyword: cell production

검색결과 8,058건 처리시간 0.526초

The Effect of Tissue Plasminogen Activator on TGF-${\beta}1$ Pre-Treated Human Mesothelial Cell Line (TGF-${\beta}1$으로 자극한 사람중피세포주에서 조직플라스미노겐 활성제가 미치는 영향)

  • Lee, Jung-Lim;Jeon, Soo-Jin;Yoo, Young-Choon;Kim, Ji-Hye;Lee, Yu-Mi;Kwon, Sun-Jung;Son, Ji-Woong;Choi, Eu-Gene;Na, Moon-Jun
    • Tuberculosis and Respiratory Diseases
    • /
    • 제70권5호
    • /
    • pp.405-415
    • /
    • 2011
  • Background: In an effort to find alternative therapeutic agents to prevent excessive fibrosis as a sequela to complicated parapneumonic effusion or empyema, we examined the effect of tissue plasminogen activator (tPA) as a fibrinolytic agent combined with talc or transforming growth factor (TGF)-${\beta}1$ in a human pleural mesothelial cell line, MeT-5A. Methods: MeT-5A cells were stimulated with various doses of talc, doxycycline or TGF-${\beta}1$ for 24 h and then were treated with tPA for an additional 24 h. Cell viability was measured by MTT assay. The production of interleukin (IL)-8 and vascular endothelial growth factor (VEGF) in the culture supernatants was measured by ELISA. Real-time PCR was carried out for measurement of type I collagen mRNA. Results: MeT-5A cells treated with talc showed a dose-dependent increase in production of IL-8. Talc also increased production of type I collagen mRNA at low doses, but talc did not influence the induction of VEGF. Addition of tPA to talc-stimulated cells showed further increases in the production of IL-8, but tPA did not influence the production of VEGF or type I collagen mRNA. TGF-${\beta}1$ increased the production of both VEGF and collagen type I mRNA, both of which were effectively inhibited by additional tPA treatment in MeT-5A cells. Conclusion: TGF-${\beta}1$ is a potent inducer of collagen synthesis without induction of IL-8 in MeT-5A cells. Addition of tPA after TGF-${\beta}1$ stimulation inhibited further fibrosis by direct inhibition of collagen mRNA synthesis as well as by inhibition of VEGF production.

Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models

  • Gabriela Leite de Souza ;Camilla Christian Gomes Moura ;Anielle Christine Almeida Silva ;Juliane Zacour Marinho;Thaynara Rodrigues Silva ;Noelio Oliveira Dantas;Jessica Fernanda Sena Bonvicini ;Ana Paula Turrioni
    • Restorative Dentistry and Endodontics
    • /
    • 제45권4호
    • /
    • pp.54.1-54.16
    • /
    • 2020
  • Objectives: This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca2+)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation. Materials and Methods: Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.0; 5.0; 9.0) and characterized using X-ray diffractometry, scanning electron microscopy, and methylene blue degradation. SAOS-2 and RAW 264.7 were treated with NCs, and evaluated for viability using the MTT assay. NCs with lower cytotoxicity were maintained in contact with LPS-stimulated (+LPS) and nonstimulated (-LPS) human dental pulp cells (hDPCs). Cell viability, nitric oxide (NO), and reactive oxygen species (ROS) production were evaluated. Cells kept in culture medium or LPS served as negative and positive controls, respectively. One-way analysis of variance and the Dunnett test (α = 0.05) were used for statistical testing. Results: ZnO:0.7Ca and ZnO:1.0Ca at 10 ㎍/mL were not cytotoxic to SAOS-2 and RAW 264.7. +LPS and -LPS hDPCs treated with ZnO, ZnO:0.7Ca, and ZnO:1.0Ca presented similar NO production to negative control (p > 0.05) and lower production compared to positive control (p < 0.05). All NCs showed reduced ROS production compared with the positive control group both in +LPS and -LPS cells (p < 0.05). Conclusions: NCs were successfully synthesized. ZnO, ZnO:0.7Ca and ZnO:1.0Ca presented the highest percentages of cell viability, decreased ROS and NO production in +LPS cells, and maintenance of NO production at basal levels.

The Effect of Glutamine on Production of Tissue-type Plasminogen Activator from Recombinant Human Melanoma Cells in Glutamine-limited Fed-batch Cultivation

  • Kim, Hyun-Goo;Kim, Tae-Ho;Kim, Dae-Seok;Park, Kyung-Yu;Park, jin-seo;Ahn, Chol;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.295-298
    • /
    • 1996
  • Under glutamine-limited condition, $2\times10^6$ (viable cells/ml) of maximum cell density and 13.5 ($\mu g$/ml) of tissue-type Plasminogen Activators (tPA) production were maintained by spike feeding fresh medium in fed-batch cultivation of human recombinant melanoma cells. It showed that tPA production was much seriously affected than cell growth according to initial glutamine concentrations. Above 3.4 (mmol/I) of glutamine concentration both cell growth and tPA production were not much affected by increasing initial glutamine concentration. Glutamine depleted situation was occurred at latter periods of batch and fed-batch cultivations below 5.4 (mmole/I) of initial glutamine concentration. It also showed that maximum glutamine consumption and ammonia evolution rates were closely related to initial glutamine concentrations. Maximum specific tPA production rate was estimated as $8.1\times19^{-6}$ ($\mu g$/cells/h) at 3.4(mmol/I) of glutamine concentration, which is higher than that from other batch and fed-batch processes.

  • PDF

Effect of Oxygen Transfer Rate and Dissolved Oxygen on the Production of PHBV by Azoto-bacter vinelandii UWD. (산소전달 속도와 용존산소가 Azotobacter vinelandii UWD의 생분해성 고분자(PHBV) 생산에 미치는 영향)

  • 박창호
    • Microbiology and Biotechnology Letters
    • /
    • 제26권6호
    • /
    • pp.529-536
    • /
    • 1998
  • In a 20 L fermentor experiments the level of dissolved oxygen (D.O.) strongly affected growth and PHBV production of Azotobacter vinelandii UWD. A higher D.O. (5%) increased specific cell growth rate two folds but PHBV production was 17 folds higher (62.3 wt%) at a lower D.O.(1%) level. D.O. level was not a good criterion to evaluate the effect of aeration on fermentation characteristics of A. vinelandii UWD. This strain maintained an equal D.O. (5%) by decreasing its oxygen consumption rate when oxygen transfer rate (OTR) was decreased by changing agitation speed at a fixed aeration rate. OTR rather than D.O. was a criterion to explain the effect of aeration on the cell growth and PHBV production. At 5% D.O. with a lower 0TR cell growth rate decreased but PHBV production (57.3 wt%) approached to that (62.3 wt%) of the lower (1%) D.O.

  • PDF

Cytokines Expression and Nitric Oxide Production under Induced Infection to Salmonella Typhimurium in Chicken Lines Divergently Selected for Cutaneous Hypersensitivity

  • Singh, Rani;Jain, Preeti;Pandey, N.K.;Saxena, V.K.;Saxena, M.;Singh, K.B.;Ahmed, K.A.;Singh, R.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권7호
    • /
    • pp.1038-1044
    • /
    • 2012
  • In the present study, the impact of Salmonella Typhimurium on cell-mediated immunity (CMI) was investigated in 5 week-old immuno divergent broiler lines selected for the high and low response to phytohemagglutinin-P. The immune response was assessed in peripheral-blood mononuclear cells (PBMCs) induced with Salmonella Typhimurium at different time intervals (0 h, 0.5 h, 2 h, 4 h, 6 h, 12 h and 24 h). The differential mRNA expression patterns of IFN-${\gamma}$, IL-2 and iNOS were evaluated by quantitative real time PCR. In-vitro production of nitric oxide (NO) was also estimated in the culture supernatant and correlated with iNOS mRNA expression. Present study showed higher production of NO in the high cell-mediated line (HCMI) as compared to the low cell-mediated line (LCMI) upon stimulation with Salmonella Typhimurium. Correspondingly, higher mRNA expression of iNOS and IFN-${\gamma}$ were observed in high response birds (HCMI); but IL-2 was down regulated in this line compared to the low response birds (LCMI). Significantly (p<0.05) higher expression of iNOS, IFN-${\gamma}$ and higher production of NO in high line indicated that the selection for PHA-P response might be employed for increasing the immune competence against Salmonella Typhimurium in chicken flocks.

Effects of TAM (Taraxacum mongolicum) on Th2 Cytokine Production in MC/9 Mast Cells (포공영(蒲公英)이 MC/9 mast cell에서의 Th2 cytokine 발현에 미치는 영향)

  • Jang, Moon-Hee;Choi, Jae-Song;Bae, Na-Young;Ahn, Teak-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • 제24권1호
    • /
    • pp.54-65
    • /
    • 2012
  • 1. Objective : The purpose of this study is to investigate the effects of TAM (Taraxacum mongolicum) on Th2 cytokine production in MC/9 mast cells. 2. Methods : The effects of TAM was analyzed by ELISA and Real-time PCR in MC/9 mast cells. Levels of IL-5, IL-13 were measured using enzyme-linked immunosorbent assays(ELISA). mRNA levels of IL-4, IL-5, IL-6, IL-13 were analyzed with Real-time PCR. 3. Results : 1) TAM inhibited the IL-4 production significantly in comparison to PI-control group at concentration of $50{\mu}g/ml$, $100{\mu}g/ml$, $200{\mu}g/ml$. 2) TAM inhibited the IL-13 production significantly in comparison to PI-control group at concentration of $50{\mu}g/ml$, $100{\mu}g/ml$, $200{\mu}g/ml$. 3) TAM inhibited the IL-4 mRNA expression significantly in comparison to PI-control group at concentration of $100{\mu}g/ml$. 4) TAM inhibited the IL-5 mRNA expression significantly in comparison to PI-control group at concentration of $50{\mu}g/ml$, $100{\mu}g/ml$. 5) TAM inhibited the IL-6 mRNA expression significantly in comparison to PI-control group at concentration of $100{\mu}g/ml$. 6) TAM inhibited the IL-13 mRNA expression significantly in comparison to PI-control group at concentration of $100{\mu}g/ml$. 4. Conclusions : These results indicate that TAM (Taraxacum mongolicum) has the effect of decreasing the Th2 cytokine production in the MC/9 mast cell.

Inhibitory effects of Sam-Myo-San on the LPS-induced production of nitric oxide and $TNF-{\alpha}$ in RAW 264.7 cells and BV-2 Microglia cells (삼묘환(三妙丸)의 LPS에 의해 활성화된 RAW 264.7 cells과 BV-2 Microglia cells로부터 생성되는 nitric oxide 및 $TNF-{\alpha}$의 생성억제효과)

  • Lee, Jae-Hyun;Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • 제21권4호
    • /
    • pp.59-67
    • /
    • 2006
  • Objectives : Sam-Myo-Whan(SMW) has been known traditional prescription with anti- anthritis activities. We investigated inhibitory effects of SMW on lipopolysaccharide (LPS)-induced nitric oxide(NO), $TNF-{\alpha}$ and inducible nitric oxide synthase(iNOS) production from RAW264.7 cells and BV-2 Microglia cells. Methods : SMW, which had been extracted with 70% MeOH, concentrated and freeze-dried was used for this experiment. After BV2 mouse brain macrophages and RAW264.7 mouse peritoneal macrophages were pretreated with increasing concentrations of SMW extract for 30min, and then activated with LPS. To investigate cytotoxicity of SMW extract, cell viability was measured by MTT assay. NO production was measured in each culture supernatant by Griess reaction. mRNA expression of iNOS in two type cells was investigated by RT-PCR. $TNF-{\alpha}$ production was measured in each culture supernatant by ELISA. Results : SMW extract significantly inhibited LPS-induced NO and $TNF-{\alpha}$ production in BV2 cells and RAW264.7 cells dose-dependently. SMW extract also greatly suppressed mRNA expression of iNOS in both type cells activated with LPS. Conclusion : These data suggests that SMW extract may have an anti-inflammatory effect through the inhibition of iNOS expression.

  • PDF

A Fermentation Strategy for Anti-MUC1 C595 Diabody Expression in Recombinant Escherichia Coli

  • Lan, John Chi-Wei;Ling, Tau Chuan;Hamilton, Grant;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.425-431
    • /
    • 2006
  • The development of fermentation conditions for the production of C595 diabody fragment (dbFv) in E. coli HB2151 clone has been explored. Investigations were carried out to study the effect of carbon supplements over the expression period, the comparison of C595 dbfv production in synthetic and complex media, the influence of acetic acid upon antibody production, and comparison of one-stage and two-stage processes operated at batch or fed-batch modes in bioreactor. Yeast extract supplied during expression yielded more antibody fragment than any other carbon supply. The synthetic medium presented higher specific productivity (0.066 mg dbFv $g^{-1}$ dry cell weight) when compared to the complex medium (0.044 mg dbFv $g^{-1}$ DCW). The comparison of fermentation strategies demonstrated that (1) one-stage fed-batch fermentation performed higher C595 dbFv production than that operated in batch mode which was significantly affected by acetate concentration; (2) a two-stage batch operation could enhance C595 dbFv production. It was found that a concentration of 12.3 mg $L^{-1}$ broth of C595 dbFv and a cell concentration of 10.8g $L^{-1}$ broth were achieved at the end of two-stage operation in 5-L fermentation.

Effects of Milk Production, Season, Parity and Lactation Period on Variations of Milk Urea Nitrogen Concentration and Milk Components of Holstein Dairy Cows

  • Yoon, J.T.;Lee, J.H.;Kim, C.K.;Chung, Y.C.;Kim, C.-H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권4호
    • /
    • pp.479-484
    • /
    • 2004
  • The study was conducted to assess the effect of milk production, parity, stage of lactation, season and individual milk components themselves on milk urea nitrogen (MUN) concentration and other milk components of 3,219 Holstein dairy cows in Korean dairy farms. The MUN concentrations in Korean dairy cows were estimated to 16.68$\pm$5.87 mg/dl. Milk yield was negatively correlated with fat and protein contents and somatic cell counts (SCC) in milk (p<0.01). The increasing MUN concentration has positive correlation with yield and fat content. By increasing somatic cell, milk yield was reduced and MUN level was increased. Cows in spring and winter produced more milk over 1.43 and 0.93 kg/day, respectively, than cows in summer (p<0.01). Milk urea nitrogen concentrations of milk produced in summer and fall were significantly lower (p<0.01) than those in spring and winter. Both MUN concentration and somatic cell counts were highest in winter. Milk yield was lower (p<0.01) in the first calving than other calving time and was tended to increase until the fifth parity and then decrease. Milk urea nitrogen and SCC were not related to parity of cows in this study. Milk yield and SCC were positively related to lactation period while MUN concentrations and milk fat and protein contents were negatively influenced by stage of lactation. In the present study, the relationship between MUN and reproduction of dairy cows was also investigated. Cow produced milk in high MUN concentrations (greater than 18 mg/dl) had more open days than cows in MUN concentrations less than 18 mg/dl. However, no significant difference between MUN concentration levels and frequency of artificial insemination was found in this study. It is suggested that although MUN values for nutritional management and measures of production or reproduction are used, non-nutritional factors should be considered.

Effects of Continuous Application of CO2 on Fruit Quality Attributes and Shelf Life during Cold Storage in Cherry Tomato

  • Taye, Adanech Melaku;Tilahun, Shimeles;Park, Do Su;Seo, Mu Hong;Jeong, Cheon Soon
    • Horticultural Science & Technology
    • /
    • 제35권3호
    • /
    • pp.300-313
    • /
    • 2017
  • 'Unicon' cherry tomato (Solanum lycopersicum) is one of the most highly perishable horticultural crops due to its high water content and respiration rate. This study was carried out to assess the effect of continuous application of $CO_2$ (control [air], 3%, and 5%) on the quality and shelf life of cherry tomato fruits stored at $10^{\circ}C$ and $85{\pm}5%$ relative humidity (RH) at two maturity stages (pink and red). Continuous application of $CO_2$ did not affect the soluble solids content (SSC) or titratable acidity (TA) of the fruit at either maturity stage during storage. However, there was a significant difference among treatments in terms of flesh firmness, cell wall thickness, pectin content, vitamin C content, skin color, lycopene content, weight loss, ethylene production rate, respiration rate, and acetaldehyde and ethanol production. Fruits treated with 5% $CO_2$ maintained their high quality with regards to vitamin C, skin color ($a^*$), lycopene content, weight loss, physiological parameters (ethylene production rate, respiration rate, and volatile compounds), flesh firmness, cell wall thickness, and pectin content at both maturity stages compared with 3% $CO_2$ treatment and the control. Continuous application of $CO_2$ (5%) reduced the ethylene production rate and the production of volatile compounds during storage. Therefore, cherry tomato 'Unicon' fruit can be stored for two weeks without losing fruit quality at both maturity stages under continuous application of 5% $CO_2$ as a postharvest treatment.