• Title/Summary/Keyword: cell production

Search Result 8,058, Processing Time 0.041 seconds

Optimizing hormonal and amino acid combinations for enhanced cell proliferation and cell cycle progression in bovine mammary epithelial cells

  • Hyuk Cheol Kwon;Hyun Su Jung;Do Hyun Kim;Jong Hyeon Han;Seo Gu Han;Dong Hyun Keum;Seong Joon Hong;Sung Gu Han
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1757-1768
    • /
    • 2023
  • Objective: The number of bovine mammary epithelial cells (BMECs) is closely associated with the quantity of milk production in dairy cows; however, the optimal levels and the combined effects of hormones and essential amino acids (EAAs) on cell proliferation are not completely understood. Thus, the purpose of this study was to determine the optimal combination of individual hormones and EAAs for cell proliferation and related signaling pathways in BMECs. Methods: Immortalized BMECs (MAC-T) were treated with six hormones (insulin, cortisol, progesterone, estrone, 17β-estradiol, and epidermal growth factor) and ten EAAs (arginine, histidine, leucine, isoleucine, threonine, tryptophan, lysine, methionine, phenylalanine, and valine) for 24 h. Results: Cells were cultured in a medium containing 10% fetal bovine serum (FBS) as FBS supplemented at a concentration of 10% to 50% showed a comparable increase in cell proliferation rate. The optimized combination of four hormones (insulin, cortisol, progesterone, and 17β-estradiol) and 20% of a mixture of ten EAAs led to the highest cell proliferation rate, which led to a significant increase in cell cycle progression at the S and G2/M phases, in the protein levels of proliferating cell nuclear antigen and cyclin B1, cell nucleus staining, and in cell numbers. Conclusion: The optimal combination of hormones and EAAs increased BMEC proliferation by enhancing cell cycle progression in the S and G/2M phases. Our findings indicate that optimizing hormone and amino acid levels has the potential to enhance milk production, both in cell culture settings by promoting increased cell numbers, and in dairy cows by regulating feed intake.

Candida parapsilosis에 의한 Xylitol 발효시 Arabinose가 미치는 영향

  • 오덕근;김상용
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.197-202
    • /
    • 1997
  • Effect of arabinose on xylitol production from xylose by Candida parapsilosis KFCC 10875 was investigated at the different concentrations of arabinose. When the arabinose was added in xylose medium, the cell growth increased and the final cell concentration was maximum at 10 g/l arabinose. The consumption rate of arabinose was greatly lower than those of xylose and arabinose. Above 10 g/l arabinose, it was not completely consumed and then remained in the medium during xylitol fermentation. Estimated cell mass obtained from arabinose increased with increasing consumed arabinose. As arabinose concentration was increased, xylitol production decreased but ethanol production increased. The inhibitory effect of ethanol, a major by-product, on xylitol production was also studied. As the ethanol concentration added increased, xylitol production decreased. When cells were inoculated in a xylose medium after removing ethanol, xylitol production was not inhibited. This results suggested that the inhibition of xylitol production resulted from ethanol which was formed by adding arabinose. It was also interesting that total products(xylitol and ethanol) yield was constant regardless of the arabinose concentration. This result suggested that the total amount of products such as xylitol and ethanol from xylose was constant regardless of the arabinose concentration and arabinose shifted the carbon flow from xylitol to ethanol.

  • PDF

Effects of Jasmonic Acid-Cellulase Combined Elicitors on the Paclitaxel Production in Suspension Cultures of Taxus wallichiana Zucc (Taxus wallichiana Zucc. 현탁세포에서 Jasmonic Acid-Cellulase 복합 Elicitor가 Paclitaxel 생합성에 미치는 영향)

  • Hoi, Nguyen Ngoc;Luong, Hoang Van;Long, Nguyen Van;Duong, Vu Binh;Byun, Sang-Yo
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.193-198
    • /
    • 2010
  • Cell cultures of Taxus wallichiana Zucc. were made to enhance the production of anticancer agent paclitaxel. In suspension cultures, the maximum cell growth rate in exponential growth phase was 0.14 $day^{-1}$ which was correlated to 4.96 days of cell doubling time. The production of paclitaxel was non-growth associated. The paclitaxel production was started after the exponential growth phase and increased to declined phase where the maximum concentration was observed. Various elicitors were tested to enhance the production of paclitaxel. The combination of two elicitors of jasmonic acid and cellulase increased the production of paclitaxel 1.8 and 3.1 times compared to paclitaxel production by individual elicitor respectively.

Rhei Rhizoma Extracts Have Antiproliferative Properties and Differential Effects on NO Production in Macrophages

  • Pyo, Suh-Kneung;Son, Eun-Wha
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.273-277
    • /
    • 2006
  • Recently, Rhei Rhizoma extracts (RRE) have begun to receive more attention as potential biological response modifiers. In the present study, we studied the antiproliferative effect of RRE on tumor cells and the effect of RRE on macrophage function. A variety of tumor cells and macrophages were treated with RRE at various concentrations. The effect of RRE on cell proliferation was measured by MTT assay and the effect of RRE on the production of nitric oxide (NO) was determined in the macrophage-like cell lines Raw264.7, C6 and peritoneal macrophages (pMQ). RRE inhibited the growth of tumor cells (e.g., B16, HOS). However, the effects of RRE on the production of NO varied with macrophage types. RRE had no effect on C6 cell growth and slightly increased the growth of Raw264.7 cells. In addition, treatment of normal pMQ with RRE enhanced NO production in a concentration-dependent manner, whereas RRE suppressed NO production at $50\;{\mu}g/mL$ in both Raw264.7 and C6 cells. However, RRE suppressed NO production in LPS/IFN-$\gamma$-stimulated C6 cells. Overall, these results suggest that RRE elicits an antiproliferative property and differentially modulates NO production in various macrophages, and have a potential for therapeutic application.

Effect of Lavender (Lavendular officinalis) Essential Oil on Nitric Oxide Production in UVB-irradiated mice (라벤더 오일이 UV-B로 조사된 마우스의 Nitric oxide 생성에 미치는 영향)

  • Song, Seon-Young;Lee, Hyun-Hwa
    • Journal of Integrative Natural Science
    • /
    • v.1 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • The aim of this study is to evaluate the effects essential oil from Lavendular officinalis on the production of UVB-irradiated-induced nitric oxide(NO), in vivo and in vitro. NO is a recently discovered mediator of cell communication involved in a variety of physiological and pathophysiological processes. This enzyme is present in various tissues including smooth muscle cells and macrophages and take part in several immunopathological process. In vitro, the cytotoxicity and cell viability of aroma oil was evaluated by the MTT assay in the concentration of 0.01, 0.05, 0.1%. And, the effect of aroma oil was investigated to production of NO in human fibroblast cells line CCD-986sk ($2{\times}10^5$ cell/well) after UVB-irradiation with aroma oil (0.01, 0.1, and 1%). The result showed that aroma oil did not affected the production of NO. In vivo, it was investigated to production of NO after UVB- irradiation with aroma oil. The experimental groups were divided into four groups. Aroma oil was stimulated the production of NO by itself. As the results, all of the in vitro and in vivo, aroma oil were affected production of NO by dependent the concentration-manners.

  • PDF

Screening of Immune-Active Lactic Acid Bacteria

  • Hwang, E-Nam;Kang, Sang-Mo;Kim, Mi-Jung;Lee, Ju-Woon
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.541-550
    • /
    • 2015
  • The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life.

Serum Free Medium Development for Recombinant Erythropoietin Production using Novel Cell Line (QT35) (QT35 세포주에서 제조합 에리스로포이에틴 생산을 위한 무혈청 배지의 개발)

  • 주형민;김병기;김선영;김태한;김태용
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.295-302
    • /
    • 1998
  • Human Erythropoietin (EPO) gene is cloned in quail fibrosarcoma cell, QT35. Because molecular weight of EPO is similar to that of serum albumin, cell culture with serum containing medium makes purification of EPO very difficult. Using fractional factorial study, we have developed serum free medium for the recombinant QT35 cell lines, QT N4D4 and QT SY-IMP, which have cloned EPO with glutamine synthetase (GS) gene amplification system and with puromycin selective marker, respectively. Among the seven frequently used medium components, fibronectin, BSA, and EGF were the most important for EPO production. However, sufficient fibronectin supplement to the medium did not make any good attachment of QT35 to culture plate over 3 days. Therefore, to maximize EPO production, we attempted a medium-shift at confluence from serum containing medium to serum free medium(QT SFM6). Using the medium-shift protocol with QT SFM6, nearly the same productivity of EPO was achieved comparing with that without medium-shift. This result was true in both QT35 cell lines in three types of culture, i.e. T flask, microcarrier and roller bottle cultures.

  • PDF

Effect of HRE and Bcl-2 on the Production of Plasminogen Activator in CHO cells

  • Bae, Geun-Won;No, Jeong-Gwon;Lee, Gyu-Min;Kim, Ik-Yeong;Kim, Ik-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.261-264
    • /
    • 2002
  • CHO (Chinese hamster ovary) cells were transfected with plasmids containing both cis-acting HRE (hypoxia response element) and CMV-promoter that controls tissue-type plasminogen activator (t-PA). CHO cells with HRE produced 16.2 fold higher t-PA concentration than CHO cells without HRE. It was noted that hypoxia strongly induced CHO cell apoptosis. which resulted in decrease of cell viability and protein production. In this study. by introducing Bcl-2, anti-apoptotic gene, we tried to recover cell viability and increase the protein production. When batch culture of both control cells without transfection of Bcl-2 and cells transfected with Bcl-2 were performed in the absence of CoCl ι hypoxia mimic condition. the cells with Bcl-2 were effected specific cell growth rates, maximum cell density. Immunoblotting assay showed Bcl-2 was recombinant with HRE dependent t- P A expression cassette, and their expression level was depended on hypoxia. By introducing Bcl-2, both cell viability and maximum cell density could be increased.

  • PDF

Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges

  • Dayem, Ahmed Abdal;Lee, Soo Bin;Kim, Kyeongseok;Lim, Kyung Min;Jeon, Tak-il;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.295-303
    • /
    • 2019
  • Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic ${\beta}$ cells. Large-scale production of insulin-secreting ${\beta}$ cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine.

In vitro Glutathione Production using Mixed Cells in an Aerated Slurry Bioreactor (혼합세포를 이용한 Aerated Slurry Bioreactor에서의 in vitro Glutathione 생산)

  • Go, Seong-Yeong;Gu, Yun-Mo
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.445-451
    • /
    • 1999
  • Glutathione production was carried out using mixed cells of E. coli TG1/pDG7 $\alpha$ and bakers yeast in an Aerated Slurry Bioreactor. Glutathione-producing enzymes were stable for 34 hours, yielding 4.6 mM glutathione in suspension reaction. Glutahione production with high density mixed cells was studied as a function of flow rate in an Aereated Slurry Bioreactor. Glutathione concentration was higher than that in suspension reaction for 32 hours at the substrate feeding rate of 5.2 mL/hr with cell recycle in continuous Aerated Slurry Bioreactor. It was for 42 hours at 2.6 mL/hr and 22 hours at 5.2 mL/hr without cell recycle. Glutahione productivity was 25.7 mg/g wet $cell{\cdot}hr$ at the substrate feeding rate of 10.4 mL/hr with cell recycle, but 5.28 mg/g wet $cell{\cdot}hr$ at 5.2 mL/hr and 1.65 mg/g wet $cell{\cdot}hr$ at 2.6 mL/hr without cell recycle. Effective production time increased from 25 to 45 hours, by using a surfactant, tween 80. As a purfing gas, nitrogen was tested instead of air to avoid a possible oxidizing effect on glutathione-producing enzymes, resulting in the increase of effective production time to 40 hours.

  • PDF