• Title/Summary/Keyword: cell membrane damage

Search Result 285, Processing Time 0.023 seconds

A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines (($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과)

  • Kim, Hae-Su;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Paek, Kyung-Min;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

Immuno-chromatographic Analysis for HPV-16 and 18 E7 Proteins as a Biomarker of Cervical Cancer Caused by Human Papillomavirus

  • Kim, Joo-Ho;Cho, Il-Hoon;Seo, Sung-Min;Kim, Ji-Sook;Oh, Kyu-Ha;Kang, Heun-Soo;Kim, In-Gyu;Paek, Se-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2999-3005
    • /
    • 2009
  • Among the more than 120 different types of human papillomavirus (HPV), types 16 and 18 have been known to be high risk agents that cause cervical cancer. We examined, in an immuno-chromatographic analysis, the potential of using the early gene product, E7 protein, as a diagnostic marker of cervical cancer caused by HPV. We developed monoclonal antibodies specific to HPV-16 and 18 E7 proteins that were produced from bacterial cells using gene recombinant technology. For each E7 protein, the optimal antibody pair was selected using the immuno-chromatographic sandwichtype binding system based on the lateral flow through membrane pores. Under these conditions, this rapid testing assay had a detection capability as low as 2 ng/mL of E7 protein. Furthermore, since viral analysis required the host cell to be lysed using chemicals such as detergents, it was possible that the E7 protein was structurally damaged during this process, which would result in a decrease in detection sensitivity. Therefore, we examined the detrimental effects caused by different detergents on the E7 protein using HeLa cells as the host. In these experiments, we found that the damage caused by the detergent, nonylphenylpolyethylene glycol (NP-40), was minimal relative to Triton X-100 commonly used for the cell lysis. Temperature also affected the stability of the E7 protein, and we found that the E7 protein was stabilized at 4$^{\circ}C$ for about 2 h, which was 4 times longer than at room temperature. Finally, a HPV-infected cervical cancer cell line, which was used as a real sample model, was treated using the optimized conditions and the presence of E7 proteins were analyzed by immuno-chromatography. The results of this experiment demonstrated that this rapid test could specifically detect HPV-infected samples.

Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure (비강내 점적 노출을 통한 산화 알루미늄 나노입자의 폐독성 평가)

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Jo, Eunhye;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • Objective: The use of nanoparticle products is expected to present a potential harmful effect on consumers. Also, the lack of information regarding inhaled nanoparticles may pose a serious problem. In this study, we addressed this issue by studying pulmonary toxicity after nasal instillation of Al-NPs in SD rats. Methods: The animals were exposed to Al-NPs at 1 mg/kg body weight (low dose), 20 mg/kg body weight (medium dose) and 40 mg/kg body weight (high dose). To determine pulmonary toxicity, bronchoalveolar lavage (ts.AnBAL) fluid analysis and histopathological examination were conducted in rats. In addition, cell viability was investigated at 24 hours after the treatment with Al-NPs. Results: BAL fluid analysis showed that total cells (TC) count and total protein (TP) concentrations increased significantly in all treatment groups, approximately two to three times. Also, lactate dehydrogenase (LDH) and cytokines such as TNF-alpha and IL-6 dose-dependently increased following nasal instillation of Al-NPs. However, polymorphonuclear leukocytes (PMNs) levels showed no significant changes in a dose dependant manner in BAL fluid. In the cytotoxicity analysis, the treatment of Al-NPs significantly and dose-dependently induced cell viability loss (20 to 30%) and damage of cell membrane (5 to 10%) in rat normal lung epithelial cells (L2). Conclusions: Our results suggest that inhaled Al-NPs in the lungs may be removed quickly by alveolar macrophages with minimal inflammatory reaction, but Al-NPs have the potential to affect lung permeability. Therefore, extensive toxicity evaluations of Al-NPs are required prior to their practical application as consumer products.

Protective Effects of Hwangryunhaedog-tang on Hypoxia-induced Apoptosis in H9c2 Cardiomyoblast Cells (황연해독탕이 저산소증에 의한 배양심근세포고사에 미치는 영향)

  • Jeong Jae Eun;Yu Bong Seon;Park Jin Yeong;Jeon In Cheol;Park Sang Beom;Lee Dae Yong;Lee Min Goo;Lee In;Moon Byun Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1733-1739
    • /
    • 2004
  • The water extract of Hwangryunhaedog-tang(HRHDT} has been traditionally used for treatment of ischemic heart and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of HRHDT rescues cells from these damages. This study was designed to investigate the protective mechanisms of HRHDT on hypoxia-induced cytotoxicity in H9c2 cardiomyoblast cells. Hypoxia, markedly decreased the viability of H9c2 cells, which was characterized with apparent apoptptic features such as chromatin condensation as well as fragmentation of genomic DNA and nuclei. However, HRHDT significantly reduced hypoxia-induced cell death and apoptotic characteristics. Also, HRHDT prevented the mitochondrial dysfunction including the disruption of mitochondria membrane permeability transition (MPT) and an increase in expression of anti-apoptotic Bcl-2 proteins in hypoxia-H9c2 cells. Taken together, this study suggests that the protective effects of the water extract of HRHDT against hypoxic damages may be mediated by the modulation of Bcl-2 and Bak expression.

Combination Effects of 7β-Hydroxycholesterol and Radiation in Human Lung Cancer Cells

  • KANG Kyoung Ah;LEE Kyoung Hwa;CHAE Sungwook;KIM Dae Yong;PARK Moon Taek;LEE Su Jae;LEE Yun Sil;HYUN Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.220-226
    • /
    • 2005
  • The present study was performed to evaluate combination effect of 7$\beta$-hydroxycholesterol (7$\beta$-OHC) and $\gamma$-radiation in NCI-H460 human lung cancer cells. 7$\beta$-OHC in combination with $\gamma$-irradiation has an enhanced effect in decreasing clonogenic survival and increasing cellular DNA damage. Pretreatment of cells with 7$\beta$-OHC enhanced radiation-induced apoptosis. Apoptosis of the cells by combined treatment of 7$\beta$-OHC and $\gamma$-irradiation was associated with reactive oxygen species generation and loss of mitochondrial membrane potential, resulting in the activation of caspase 9 and caspase 3. The combined treatment also resulted in an increased G1 cell cycle distribution. These results indicate that 7$\beta$-OHC shows the additive effect of radiation sensitivity in human lung carcinoma cells in vitro.

Functional Implications of Transporters Under Nitrosative Stress Conditions

  • Yu, Kyung-Ha;Maeng, Han-Joo;Chung, Suk-Jae
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.139-153
    • /
    • 2010
  • Nitrosative stress is defined as pathophysiological conditions that are related to covalent modifications of proteins by nitration/nitrosylation by forms of nitrogen oxide ($NO_x$), leading to DNA damage, ultimately, cell death. This type of stress condition appears to be associated with a number of disease states, including diabetes, inflammation and neurodegenerative diseases. Since these pathological conditions are frequently chronic in nature and, thus, require long-term treatment, changes in pharmacokinetics are likely to affect the therapy. Transporters are membrane proteins that facilitate the movement of substrates, including drugs, across plasma membranes of epithelial / endothelial cells. Since it is now increasingly evident that transporters are pharmacokinetically significant, functional alteration of transporters by this stress condition may have therapeutic relevance. In this review, experimental techniques that are used to study both in vivo and in vitro nitrosative stress are summarized and discussed, along with available literature information on the functional implication of transporters under conditions of nitrosative stress conditions. In the literature, both functional induction and impa irment were apparently present for both drug transporter families [i.e., ATP-binding cassette (ABC) and solute carrier families (SLC)]. Furthermore, a change in the function of a certain transporter appears to have temporal dependency by impairment in the early phase of nitrosative stress and induction thereafter, suggesting that the role of nitrosative stress is complex in terms of functional implications of the transporters. Although the underlying mechanisms for these alterations are not fully understood, protein nitration/nitrosylation appears to be involved in the functional impairment whereas transcript factor(s) activated by nitrosative stress may play a role, at least in part, in functional induction. Interestingly, functional induction under conditions of nitrosative stress has not been observed for SLC transporters while such impairment has been documented for both ABC and SLC transporters. Further investigations appear to be necessary to fully delineate the underlying reasons for these differences on the impact and importance of nitrosative stress conditions.

The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats

  • Erdogan, Hakan;Tuncdemir, Matem;Kelten, Bilal;Akdemir, Osman;Karaoglan, Alper;Tasdemiroglu, Erol
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.6
    • /
    • pp.445-454
    • /
    • 2015
  • Objective : In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods : Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results : In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion : We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats.

Effect of caffeine on the antibacterial activity of Lactobacillus casei: caffeine and antibacterial activity of L. casei

  • Jang, Eunjeong;Park, Jin A;Kim, Young Ha;Kim, Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.981-989
    • /
    • 2019
  • Coffee is a popular beverage worldwide, and the scale of consumption is growing rapidly. Many studies have shown that increased coffee consumption has various effects on human health, including beneficial effects on liver diseases, clinical type 2 diabetes, and Parkinson's disease. However, the influences of coffee or caffeine (a component of coffee) on the gut microbiota have not been examined in detail. Here, we tested whether caffeine could alter the antimicrobial activity of L. casei against E. coli. Interestingly, we found that treatment with 0.3 mg/mL caffeine increased the antimicrobial activity of L. casei against E. coli. This activity was not associated with the release of lactic acid but did appear to be related to a heat-labile factor present in the L. casei culture supernatant. Our analyses suggest that the putative antimicrobial factor found in the culture supernatant of L. casei treated with caffeine may be bacteriocin. Taken together, our results suggest that caffeine, which is an ingredient of coffee, increases the antimicrobial activity of L. casei against E. coli through the enhanced production of bacteriocin. These findings also suggest that coffee consumption affects the ability of beneficial bacteria to decrease pathogenic bacteria and/or prevent the progression of bacterial infection-associated diseases in the gut.

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

New Whitening agent: Kojyl-APPA

  • Hwang, Jae-Sung;Kim, Duck-Hee;Soomi Anh;Baek, Heung-Soo;Park, Hyunjung -Jin;Lee, Jin-Young;Lee, Byeong-Gon;Ihseop Chang;Kang, Hak-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.119-131
    • /
    • 2001
  • Exposure of the human skin to UV-light can cause sun-tanning, photoaging and even photo-carcinogenesis. Melanin is important in protecting the skin against UV damage, but excessive or uneven melanin production can lead to the formation of freckles and aged spot. Control of hyperpigmentation is becoming even more important as aged population continues to grow. These needs led us to develop effective and safe depigmenting-agent, kojyl 3-aminopropyl phosphate (kojyl-APPA), called Whitegen. The development of whitegen was based on the fact that phosphate group of 3-aminopropyl phosphate can make kojic acid more compatible to the skin membrane and more stable. Instability of kojic acid has been a problem in cosmetic use. The insertion of phosphoester group has been recognized as a powerful tool to improve such physical properties as solubility and stability, because the phosphodiester residue is well characterized as a non-toxic moiety, having a high affinity for cell membranes. Kojyl-APPA showed no tyrosinase inhibition effect compared to kojic acid in vitro, but showed tyrosinase inhibition effect in situ. It means that kojyl-APPA is converted to kojic acid enzymatically in cells. Kojyl-APPA showed the inhibitory activity on melanin synthesis in mouse melanoma and normal humal melnaocytes and also showed long-lasting stability in comparison with its original form (kojic acid). Kojyl-APPA showed depigmenting effects when applied to UVB-induced hyperpigmentated region of guinea pig skin. Based on these results, kojyl 3-aminopropyl phosphate can be used as a safe and effective ingredient for the brightness and cleanness of skin.

  • PDF