• Title/Summary/Keyword: cell infection

Search Result 1,725, Processing Time 0.042 seconds

Antioxidant, anti-inflammatory, antibacterial and ovoprotective effects of mixture of Ulmi cortex and Smilacis rhizoma extracts (유백피, 토복령 추출물 혼합물의 항산화, 항염, 항균 및 난소세포 보호효과)

  • Jeon, Sang Kyu;Ahn, Jung Yun;Park, Su Mi;Park, Sun-Dong;Lee, Ju-Hee
    • Herbal Formula Science
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • Objectives : US extract is a mixture of each extract of Ulmi cortex and Smilacis rhizoma. In this study, we investigated the antioxidant, anti-inflammatory, antibacterial, and ovoprotective effects of US extract in in vitro model to identify potential candidates for improving female reproductive function. Methods : The antioxidant activity of US extract was measured using 1,1-diphenyl- 2-picrylhydrazyl free radical and superoxide anion radical scavenging assays. The anti-inflammatory effect of US extract on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were determined with a nitric oxide (NO) assay, enzyme linked immunosorbent assays, and western blots analysis. The antibacterial activity of US extract against vaginitis infection microorganisms were determined with disc diffusion and minimum inhibitory concentration assays. The ovoprotective effect of US extract on 4-vinylcyclohexene diepoxide (VCD)-induced ovotoxicity in CHO-K1 cells were evaluated with a cell viability assay. Result : US extract showed good antioxidant capacity and inhibited LPS-induced NO production as well as iNOS and COX-2 expression and secretion of pro-inflammatory cytokine IL-6 without affecting the cell viability. It showed significant clear zones for Staphylococcus aureus and Candida albicans but did not indicate the clear zones for Escherichia coli and Enterococcus faecium. VCD-induced ovotoxicity in CHO-K1 cells was significantly reduced by US extract pre-treatment. Conclusions : These results demonstrate that US extract has antioxidant activity, anti-inflammatory effects on the LPS-stimulated macrophages, antibacterial activity against vaginitis infection microorganisms, and protective effects on the ovarian cells against VCD-induced ovotoxicity. These findings suggest that the US extract can be used as new prescriptions, supplements, functional foods, and cosmetics for improving female reproductive function.

Application of HIV-1 Complementation System to Screen the Anti-AIDS Agents That Targets the Late Stage of HIV-1 Replication Cycle (바이러스 생활환의 후기 단계에 작용하는 항AIDS제의 탐색을 위한 HIV-1 Complementation System의 응용)

  • Ryu, Ji-Yoon;Choi, Soo-Young;Kim, Yung-Hi;Park, Jin-Seu
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.3
    • /
    • pp.161-170
    • /
    • 2000
  • Continuous efforts are being made to find effective therapeutic agents against HIV-1, the causative agents of AIDS. In this study, we developed a cell-based assay system employing a trans-complementation for production of recombinant viruses which are capable of undergoing one round of replication in CD4+ T cells. This assay system was tested for ability to screen the agents that act at late stage of HIV-1 life cycle. The effect of a protease inhibitor on the trans-complementation assay was assessed. Recombinant HIV-1 viruses were prepared from a trans-complementation in the presence of various concentrations of protease inhibitor. Inhibition of single round infection of these recombinant viruses by protease inhibitor was observed to be a dose-dependent manner. Inhibitory effects of a protease inhibitor on HIV-1 Gag polyprotein processing by HIV-1 protease was detected at concentrations of the protease inhibitor compatible with inhibition of virus infection, confirming that the corresponding step was involved in the inhibitory mechanism of this compound. Together, these results provide evidence that a cell-based assay system established in this study can be used to screen the agents that target the late stage of HIV-1 life cycle.

  • PDF

Relative Risk of Virulence Factors in Candida-Infected Mouse (캔디다균 감염 마우스 모델에서 병독인자의 비교위험도)

  • Kim, Dong-Hwa;Shin, Woon-Seob;Lee, Kyoung-Ho;Kim, Kyung-Hoon;Park, Yoon-Sun;Park, Joo-Young;Koh, Choon-Myung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.4
    • /
    • pp.317-324
    • /
    • 2000
  • Candida albicans is one of the most frequently isolated fungal pathogens in human. Recently, the prevalence of candida infection has markedly increased, partially due to the increase of immunocompromised hosts. Proposed virulence factors of the pathogenic Candida are the ability to form hyphae to adhere to epithelial cell surfaces, and to secrete acid proteinases and phospholipases. We measured the relative cell surface hydrophobicity (CSH) and the ability of proteinase production (PROT), phospholipase production (PLase), adherence to host epithelium (ADH), and hyphal transition (Germ). The relative risk of virulence factors was analyzed by lethality test in murine model of hematogeneously disseminated candidal infection. According to Cox's proportional hazard analysis, the statistically significant virulence factors were PROT, ADH, and CSH. PROT was the highest risk factor of them. To evaluate the applicability for the diagnosis and treatment of Candidiasis, we examined the protective effect of the active and passive immunizations with the materials purified from virulence factors and antibodies to them in Candia-infected mice model. The mean survival times of active and passive immunized groups were slightly longer than those of non-immunized groups.

  • PDF

Construction and Preliminary Immunobiological Characterization of a Novel, Non-Reverting, Intranasal Live Attenuated Whooping Cough Vaccine Candidate

  • Cornford-Nairns, R.;Daggard, G.;Mukkur, T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.856-865
    • /
    • 2012
  • We describe the construction and immunobiological properties of a novel whooping cough vaccine candidate, in which the aroQ gene, encoding 3-dehydroquinase, was deleted by insertional inactivation using the kanamycin resistance gene cassette and allelic exchange using a Bordetella suicide vector. The aroQ B. pertussis mutant required supplementation of media to grow but failed to grow on an unsupplemented medium. The aroQ B. pertussis mutant was undetectable in the trachea and lungs of mice at days 6 and 12 post-infection, respectively. Antigen-specific antibody isotypes IgG1 and IgG2a, were produced, and cell-mediated immunity [CMI], using interleukin-2 and interferon-gamma as indirect indicators, was induced in mice vaccinated with the aroQ B. pertussis vaccine candidate, which were substantially enhanced upon second exposure to virulent B. pertussis. Interleukin-12 was also produced in the aroQ B. pertussis-vaccinated mice. On the other hand, neither IgG2a nor CMI-indicator cytokines were produced in DTaP-vaccinated mice, although the CMI-indicator cytokines became detectable post-challenge with virulent B. pertussis. Intranasal immunization with one dose of the aroQ B. pertussis mutant protected vaccinated mice against an intranasal challenge infection, with no pathogen being detected in the lungs of immunized mice by day 7 post-challenge. B. pertussis aroQ thus constitutes a safe, non-reverting, metabolite-deficient vaccine candidate that induces both humoral and cell-mediated immune responses with potential for use as a single-dose vaccine in adolescents and adults, in the first instance, with a view to disrupting the transmission cycle of whooping cough to infants and the community.

Myelination by co-culture of neurons and schwann cells and demyelination by virus infection (뉴런세포와 슈반세포의 공동배양에 의한 수초화와 바이러스 감염에 의한 탈수초화)

  • Sa, Young-Hee;Kweon, Tae Dong;Kim, Ji-Young;Kim, Hyun Joo;Lee, Bae Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.448-451
    • /
    • 2018
  • The purpose of this study was to investigate the developmental process of myelination by neuron and Schwann cell cultures and the development of demyelination by herpes simplex virus-1 infection by electron microscopy and molecular biological analysis. The dorsal root ganglion (DRG) was isolated from the mouse embryo and Schwann cells and neuronal cells were cultured in vitro. Neuronal cells treated with mitotic inhibitors and purified Schwann cells were co-cultured together to induce myelination. The herpes simplex virus-1 was infected with the co-cultured cells, and the demyelination was induced. The myelin protein zero (MPZ) antibody, which means the presence of myelin formation, was used and electron microscopy was used to observe the development of myelin and dehydration.

  • PDF

A Case of Mycoplasma Pneumoniae Pneumonia Accompanying High Adenosine Deaminase Activity in Pleural Effusion (흉막삼출액에서 높은 Adenosine Deaminase 활성도를 보인 마이코플라즈마 폐렴 1예)

  • Seo, Hyang-Eun;Kim, Yeon-Jae;Kim, Seong-Kyu;Kang, Hyun-Jae;Do, Yun-Kyung;Yoon, Hye-Jin;Chyun, Jae-Hyun;Lee, Byung-Ki;Kim, Won-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.1
    • /
    • pp.70-75
    • /
    • 2002
  • Mycoplasma pneumioniae has a unique genomic composition, cellular biology, and a fastidious nature as the smallest cell-free living organism that lacks a cell wall. Previous studies have suggested that a clinical manifestation of a M. pneumoniae infection is a consequence of a host immune response, particularly involving cellular immunity. Adenosine deaminase (ADA) is the main T-lymphocyte enzyme, and its activity is high in diseases where cellular immunity is stimulated. Therefore, its activity is useful for diagnosing a tuberculous pleural effusion. A pleural effusion is found in 5-20% of Mycoplasma pneumonia patients. However, there are few reports of high ADA activity in a mycoplasmal pleural effusion. Here we report a case of Mycoplasma pneumoniae infection established by a polymerase chain reaction and serologic tests, accompanying high ADA activity in a pleural effusion.

Azasugar-Containing Phosphorothioate Oligonucleotide (AZPSON) DBM-2198 Inhibits Human Immunodeficiency Virus Type 1 (HIV-1) Replication by Blocking HIV-1 gp120 without Affecting the V3 Region

  • Lee, Jinjoo;Byeon, Se Eun;Jung, Ju Yeol;Kang, Myeong-Ho;Park, Yu-Jin;Jung, Kyeong-Eun;Bae, Yong-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.122-129
    • /
    • 2015
  • DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intracellular sequence-specific antisense activity. Nevertheless, the antiviral properties of DBM-2198 and other AZPSONs were highly restricted to HIV-1. Unlike other P = S oligonucleotides, DBM-2198 caused no host cell activation upon administration to cultures. HIV-1 that was pre-incubated with DBM-2198 did not show any infectivity towards host cells whereas host cells pre-incubated with DBM-2198 remained susceptible to HIV-1 infection, suggesting that DBM-2198 acts on the virus particle rather than cell surface molecules in the inhibition of HIV-1 infection. Competition assays for binding to HIV-1 envelope protein with anti-gp120 and anti-V3 antibodies revealed that DBM-2198 acts on the viral attachment site of HIV-1 gp120, but not on the V3 region. This report provides a better understanding of the antiviral mechanism of DBM-2198 and may contribute to the development of a potential therapeutic drug against a broad spectrum of HIV-1 variants.

The Basis of Different Sensitivities of Ovarian Cancer Cells to the Recombinant Adenoviral Vector System Containing a Tumor-Specific L-plastin Promoter and E. coli Cytosine Deaminase Gene as a Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2009
  • We have reported previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase gene (CD) is driven by the tumor-specific L-plastin promoter. AdLPCD vector had been evaluated for its efficacy of chemosensitization of ovarian cancer cells to 5-FC. In spite of the fact that ovarian cancer cells, i.e., OVCAR-3 and SK-OV-3, are capable for adenoviral transduction judged by LacZ reporter gene analysis, two cell lines demonstrated quite different sensitivities toward AdLPCD/5-FC system. In OVCAR-3 cells, infection of AdLPCD followed by exposure to 5-FC resulted in the suppression of cell growth with statistical significance. On the other hand, SK-OV-3 cells were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The object of study was to investigate factors that would determine the sensitivity to AdLPCD/5-FC. We evaluated conversion rate of 5-FC to 5-FU after infection of AdLPCD by HPLC analysis, $IC_{50}$ of 5-FU, the expression level of integrin receptors i.e., ${\alpha}v{\beta}3$ and ${\alpha}v{\beta}5$, and status of p53 in OVCAR-3 and SK-OV-3 cells. The results indicated that OVCAR-3 cells have few favorable features compared with SK-OV-3 cells to be more effective to the AdLPCD/5-FC strategy; higher level of ${\alpha}v{\beta}5$ integrin, higher rate of conversion of 5-FC into 5-FC, and lower $IC_{50}$ of 5-FU. The results suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

Cytohistological Study of Abnormal Cell Division of Arabidopsis Stem Infected with Geminivirus (Geminivirus에 감염된 Arabidopsis 줄기의 이상세포분열에 관한 세포조직학적 연구)

  • 박종범;이석찬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.153-158
    • /
    • 1998
  • The internal structures of Arabidopsis thaliana infected with beet curly top virus (BCTV) were studied by light microscopy. Hyperplasia was observed in the inflorescence stems of Arabidopsis thaliana ecotype Sei-O at 2 weeks after BCTV-Logan inoculation and callus was induced on symptomatic tissues at 4 weeks after virus inoculation. The infection processes were revealed as follows: hyperplasia of phloem tissue, necrosis of hyperplastic phloems, lacuna formation of necrotic tissues, elongation and enlargement of cortex and epidermal cells surrounding the lacuna formed phloem tissues, induction of cell division in the enlarged cortex and epidermal cells, and induction of callus tissue. Callus formation on Arabidopsis was caused by the virus infection, and virus inclusion body was observed in both phloem and callus tissue by azure-A staining.

  • PDF

Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis

  • Wang, Mingyang;Zhao, Yan;Cao, Lingfang;Luo, Silong;Ni, Binyan;Zhang, Yi;Chen, Zeliang
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2021
  • Background: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. Objectives: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail. Methods: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto. Results: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ. Conclusions: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi.