• Title/Summary/Keyword: cell infection

Search Result 1,711, Processing Time 0.026 seconds

Anti-herpes Activity of Vinegar-processed Daphne genkwa Flos Via Enhancement of Natural Killer Cell Activity

  • Uyangaa, Erdenebileg;Choi, Jin Young;Ryu, Hyung Won;Oh, Sei-Ryang;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2015
  • Herpes simplex virus (HSV) is a common causative agent of genital ulceration and can lead to subsequent neurological disease in some cases. Here, using a genital infection model, we tested the efficacy of vinegar-processed flos of Daphne genkwa (vp-genkwa) to modulate vaginal inflammation caused by HSV-1 infection. Our data revealed that treatment with optimal doses of vp-genkwa after, but not before, HSV-1 infection provided enhanced resistance against HSV-1 infection, as corroborated by reduced mortality and clinical signs. Consistent with these results, treatment with vp-genkwa after HSV-1 infection reduced viral replication in the vaginal tract. Furthermore, somewhat intriguingly, treatment of vp-genkwa after HSV-1 infection increased the frequency and absolute number of $CD3^-NK1.1^+NKp46^+$ natural killer (NK) cells producing interferon (IFN)-${\gamma}$ and granyzme B, which indicates that vp-genkwa treatment induces the activation of NK cells. Supportively, secreted IFN-${\gamma}$ was detected at an increased level in vaginal lavages of mice treated with vp-genkwa after HSV-1 infection. These results indicate that enhanced resistance to HSV-1 infection by treatment with vp-genkwa is associated with NK cell activation. Therefore, our data provide a valuable insight into the use of vp-genkwa to control clinical severity in HSV infection through NK cell activation.

Production of Hantaan Virus from Human Immortalized Retina Cell and Its Immunogenicity

  • Bae, Cheon-Soon;Choi, Jun-Youl;An, Chang-Nam;Kim, Jong-Su;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.882-889
    • /
    • 2002
  • Hantaan vims production, using human immortalized retina cell (PER. C6), was investigated to develop an inactivated virus vaccine. To infect Hantaan virus into PER. C6, two infection methods (medium-to-cell and cell-to-cell) were tried, and IFA results showed that the cell-to-cell infection method was very useful for producing Hantaan virus-infected PER, C6. Hantaan virus production was significantly affected by the growth rate of PER. C6 and the content of FBS in medium. Higher specific growth rate of infected PER. C6 and lower FBS content induced higher production of Hantaan virus. The inactivated human cell-culture vaccines with various EIA titers were prepared, their antibody responses were compared with those of inactivated suckling mouse brain vaccines ($Hantavax^처리불가$). and the result showed their immunogenicities were slightly higher than those of inactivated suckling mouse vaccines. Therefore, this study shows the possibility of the development of Hantaan virus vaccine from a human cell culture.

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.335-340
    • /
    • 2023
  • During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Regulatory T Cells and Infectious Disease

  • Rouse, Barry T.;Sehrawat, Sharvan
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2007
  • Various cell types that express regulatory function may influence the pathogenesis of most and perhaps all infections. Some regulatory cells are present at the time of infection whereas others are induced or activated in response to infection. The actual mechanisms by which different types of infections signal regulatory cell responses remain poorly understood. However a most likely mechanism is the creation of a microenvironment that permits the conversion of conventional T cells into cells with the same antigen specificity that have regulatory function. Some possible means by which this can occur are discussed. The relationship between regulatory cells and infections is complex especially with chronic situations. The outcome can either be of benefit to the host or damage the disease control process or in rare instances appears to be a component of a finely balanced relationship between the host and the infecting agent. Manipulating the regulatory cell responses to achieve a favorable outcome of infection remains an unfulfilled objective of therapeutic immunology.

Involvement of Lysosome Membrane Permeabilization and Reactive Oxygen Species Production in the Necrosis Induced by Chlamydia muridarum Infection in L929 Cells

  • Chen, Lixiang;Wang, Cong;Li, Shun;Yu, Xin;Liu, Xue;Ren, Rongrong;Liu, Wenwen;Zhou, Xiaojing;Zhang, Xiaonan;Zhou, Xiaohui
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.790-798
    • /
    • 2016
  • Chlamydiae, obligate intracellular bacteria, are associated with a variety of human diseases. The chlamydial life cycle undergoes a biphasic development: replicative reticulate bodies (RBs) phase and infectious elementary bodies (EBs) phase. At the end of the chlamydial intracellular life cycle, EBs have to be released to the surrounded cells. Therefore, the interactions between Chlamydiae and cell death pathways could greatly influence the outcomes of Chlamydia infection. However, the underlying molecular mechanisms remain elusive. Here, we investigated host cell death after Chlamydia infection in vitro, in L929 cells, and showed that Chlamydia infection induces cell necrosis, as detected by the propidium iodide (PI)-Annexin V double-staining flow-cytometric assay and Lactate dehydrogenase (LDH) release assay. The production of reactive oxygen species (ROS), an important factor in induction of necrosis, was increased after Chlamydia infection, and inhibition of ROS with specific pharmacological inhibitors, diphenylene iodonium (DPI) or butylated hydroxyanisole (BHA), led to significant suppression of necrosis. Interestingly, live-cell imaging revealed that Chlamydia infection induced lysosome membrane permeabilization (LMP). When an inhibitor upstream of LMP, CA-074-Me, was added to cells, the production of ROS was reduced with concomitant inhibition of necrosis. Taken together, our results indicate that Chlamydia infection elicits the production of ROS, which is dependent on LMP at least partially, followed by induction of host-cell necrosis. To our best knowledge, this is the first live-cell-imaging observation of LMP post Chlamydia infection and report on the link of LMP to ROS to necrosis during Chlamydia infection.

Effects of Experimental Haemonchus contortus Infection on Red Blood Cells and White Blood Cells of Growing Goats

  • Howlader, M.M.R.;Capitan, S.S.;Eduardo, S.L.;Roxas, N.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.679-682
    • /
    • 1997
  • A uniform group of 12 upgraded growing goats aged between 6.0 and 7.5 months were used in this study. They were divided into three groups of $T_1$, $T_2$ and $T_3$. Four animals were randomly allocated to each group. They were infected orally with three levels (0 larva, 5,000 larvae and 10,000 larvae) of infective Haemonchus contortus larvae. Before infection, all animals were housed in individual pens with concrete floors. They were provided with a uniform management. Total red blood cells (RBC) and total white blood cells (WBC) were measured by hemacytometric method. Results showed significant interaction effect of H. contortus infection and duration of infection on red blood cell counts. The RBC counts of animals in treatment groups 2 and 3 showed significantly lower values over the control group from the second fortnight to the end of the study. The overall mean RBC values of groups 1, 2 and 3 were 11.73, 9.70 and $9.12million/mm^3$ blood, respectively. H. contortus infection did not significantly influence the total leukocyte counts. Worm infection and duration of infection interaction was also absent on WBC counts. However, the time or duration of infection significantly influenced the WBC counts. Fecal egg counts showed patent infections in the infected animals which also indicated by postmortem worm counts.

Systems biology of virus-host signaling network interactions

  • Xue, Qiong;Miller-Jensen, Kathryn
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.213-220
    • /
    • 2012
  • Viruses have evolved to manipulate the host cell machinery for virus propagation, in part by interfering with the host cellular signaling network. Molecular studies of individual pathways have uncovered many viral host-protein targets; however, it is difficult to predict how viral perturbations will affect the signaling network as a whole. Systems biology approaches rely on multivariate, context-dependent measurements and computational analysis to elucidate how viral infection alters host cell signaling at a network level. Here we describe recent advances in systems analyses of signaling networks in both viral and non-viral biological contexts. These approaches have the potential to uncover virus- mediated changes to host signaling networks, suggest new therapeutic strategies, and assess how cell-to-cell variability affects host responses to infection. We argue that systems approaches will both improve understanding of how individual virus-host protein interactions fit into the progression of viral pathogenesis and help to identify novel therapeutic targets.

Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice

  • Byeongseok, Kim;Ki Hoon, Park;Ok-Hee, Lee;Giwan, Lee;Hyukjung, Kim;Siyoung, Lee;Semi, Hwang;Young Bong, Kim;Youngsok, Choi
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • Objective: This study aimed to examine the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy in cytokeratin-18 (K18)-hACE2 transgenic mice. Methods: To determine the expression of hACE2 mRNA in the female reproductive tract of K18-hACE2 mice, real-time polymerase chain reaction (RT-PCR) was performed using the ovary, oviduct, uterus, umbilical cord, and placenta. SARS-CoV-2 was inoculated intranasally (30 μL/mouse, 1×104 TCID50/mL) to plug-checked K18-hACE2 homozygous female mice at the pre-and post-implantation stages at 2.5 days post-coitum (dpc) and 15.5 dpc, respectively. The number of implantation sites was checked at 7.5 dpc, and the number of normally born pups was investigated at 20.5 dpc. Pregnancy outcomes, including implantation and childbirth, were confirmed by comparison with the non-infected group. Tissues of infected mice were collected at 7.5 dpc and 19.5 dpc to confirm the SARS-CoV-2 infection. The infection was identified by performing RT-PCR on the infected tissues and comparing them to the non-infected tissues. Results: hACE2 mRNA expression was confirmed in the female reproductive tract of the K18-hACE2 mice. Compared to the non-infected group, no significant difference in the number of implantation sites or normally born pups was found in the infected group. SARS-CoV-2 infection was detected in the lungs but not in the female reproductive system of infected K18-hACE2 mice. Conclusion: In K18-hACE2 mice, intranasal infection with SARS-CoV-2 did not induce implantation failure, preterm labor, or miscarriage. Although the viral infection was not detected in the uterus, placenta, or fetus, the infection of the lungs could induce problems in the reproductive system. However, lung infections were not related to pregnancy outcomes.

In vitro infection of Cryptosporidium parvum to four different cell lines

  • Yu, Jae-Ran;Choi, Sung-Don;Kim, Young-Wook
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.2
    • /
    • pp.59-64
    • /
    • 2000
  • To determine a suitable condition for in vitro infection model of cryptosporidium parvum, four different cell lines, AGS, MDCK, HCT-8 and Caco-2, were used as host cell lines which were cultured at various concentrations of added supplements. These supplement include fetal bovine serum (FBS), sodium choleate, ascorbic acid, folic acid, calcium pantothenate, para-aminobenzoic acid and pyruvate and their effects on the cell lines which were infected with C. parvum were evaluated. The results of this study showed that the AGS cell line was most susceptible to C. parvum whereas the Caco-2 cells appeared to be least susceptible to C. parvum. In regards to the serum condition, 10% FBS was suitable for the growth of AGS and HCT-8 cells, and 1% FBS was good for the growth of the MDCK cells when they were inoculated with C. parvum. Vitamines had a positive effect on the AGS cells, and pyruvate also showed positive effects on all of the cell lines except for Caco-2. Modified medium for each cell line was prepared by adding appropriate amounts of each supplement which resulted in the highest parasite infection number. Modified media increased the number of parasites infected on AGS cells to 2.3-fold higher when compared to the control media. In this study, we found that the AGS cell line was a suitable host model for evaluating C. parvum in vitro study and the media contents for the optimal infection conditions were suggested.

  • PDF

Proliferation of Toxoplasma gondii Suppresses Host Cell Autophagy

  • Lee, Youn-Jin;Song, Hyun-Ouk;Lee, Young-Ha;Ryu, Jae-Sook;Ahn, Myoung-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.3
    • /
    • pp.279-287
    • /
    • 2013
  • Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.