• Title/Summary/Keyword: cell infection

Search Result 1,711, Processing Time 0.031 seconds

Studies on antigenicity and production of monoclonal antibody for diagnosis of canine heartworm(Dirofilaria immitis) (개 심장사상충(Dirofilaria immitis) 진단을 위한 항원성 조사 및 단크론항체 생산)

  • Lee, Cheol-soon;Jee, Cha-ho
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.130-137
    • /
    • 2000
  • In order to diagnose canine heartworm infection by antigen capture ELISA, the crude somatic(S), partial somatic(below 45kDa) and excretory/secretory(E/S) antigen of adult heartworm were identified and the antigenicity was examined by silver stain, immunoblot and ELISA. Then, production of monoclonal antibody to specific antigen carried out in this experiment. The bands to S antigen and E/S antigen were recognized between 10 and 200kDa and common bands were recognized strongly 14, 18, 28, 43kDa by silver stain. By western blot analysis, fractions to S antigen were recognized 14, 16, 18, 20, 24, 28, 32, 43, 50, 55kDa, etc. and only a 14kDa to E/S antigen in positive sera which were positive in modified Knott's test and necropsy. In ELISA, the positive sera reacted to antigens(SA, $SA_{45}$, E/S) were significantly different from negative sera by Student's t-test(p<0.05). Four hybridoma cell lines(14, 16, 17, 32kDa) than produce specific monoclonal antibodies for these antigens were obtained by immunizing BALB/c mice with a partially purified somatic antigen (below 45kDa) preparation, by fusing spleen cells with SP2/O cell myeloma cells, and by screening cell culture supernatants for antibody. In these results, it was confirmed that partial somatic antigen(below 45kDa) or E/S antigen can be used for serologic diagnosis of heartworm infection and monoclonal antibody reacting with specific antigen(14kDa) can be used for antigen capture ELISA in prepatent period of canine heartworm infection.

  • PDF

Effects of ibaraki virus on viability of preimplantation mouse embryos (Ibaraki virus가 착상전(着床前) 마우스수정란(受精卵)의 생존성(生存性)에 미치는 영향(影響))

  • Kim, Yong-jun;Jo, Choong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.3
    • /
    • pp.343-359
    • /
    • 1989
  • To study the effects of ibaraki virus on preimplantation mouse embryos collected from prepubertal ICR and BALB/cByJ mice (30~40days old) by superovulation, zona pellucidaintact(ZPI) or free(ZPF) embryos(n=774) of 4- to 8-cell and morulae were exposed to $10^{5.8}$ $TCID_{50}$ of the virus up to 96 hours. The embryos were examined morphologically by observing the degeneration and hatching rates, and virologically and immunologically by determining the presence of infection with the virus, in addition, the effect of washing the embryos to remove virus possibly attached to was also investigated. The ZPI 4- to 8-cell embryos and morulae exposed to the virus showed considerably higher degeneration rate than those not exposed, for 96, and for 72 to 96 hours, respectively(p<0.01). The ZPF 4- to 8-cell embryos and morulae exposed to the virus showed considerably higher degeneration rates than those not exposed, throughout the whole culture hours in vitro (p<0.01). The ZPI 4- to 8-cell embryos and morulae not exposed to the virus showed considerably higher rates of hatched blastocyst than those exposed (p<0.01). The virus infection rates of the ZPF 4- to 8-cell embryos and morulae were significantly higher than those of the ZPI embryos according to cell culture system. The viral antigen was detected exclusively on the zona pellucida of ZPI embryos, while the antigen was evenly distributed in the blastomeres of ZPF embryos by the immunofluorescent assay. In the ZPI embryos exposed to ibaraki virus, the virus was detected in the two times-washing groups, but not in the ten times-washing groups. The results indicated that zona pellucida of murine embryos would provide an effective protection and that ten times-washing of the ZPI embryos previously exposed to the virus was effective to remove virus from the embryos.

  • PDF

Overexpression of Fish DRG2 Induces Cell Rounding

  • Park, Jeong-Jae;Cha, Seung-Ju;Ko, Myung-Seok;Cho, Wha-Ja;Yoon, Won-Joon;Moon, Chang-Hoon;Do, Jeong-Wan;Kim, Sung-Bum;Hebok Song
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.295-300
    • /
    • 2002
  • Previously, we reported induced expression of developmentally regulated CTP-binding protein 2 (DRG2) in fish cells at the late stage of rhabdovirus infection. To investigate the biological role of fish DRG2 (fDRG2), we transfected CHSE-214 cells with an expression vector containing complete fDRG2 fused to the N-terminal end of an enhanced green fluorescent protein (EGFP). Low level expression of fDRG2-EGFP did not induce morphological change or cell death. However, a high level expression of fDRG2-EGFP induced cell rounding and caused depletion of the cell population in FACS analysis. Several truncated fragments were fused to EGFP. FACS analysis was conducted to determine the presence of cells expressing high levels of the resulting chimera. While cells expressing a high level of N-terminus were detected, those expressing high levels of the C-terminal fragment 243-290 containing the G4 motif were absent in FACS analysis. Based on these observations, we propose that overexpression of fDRG2 may induce cell rounding, a representative cytopathic effect of virus-infected cells in the late stage of infection and the C-terminus of the fDRG2 is essential for this function.

Characterization of a Cell Line HFH-T2, Producing Viral Particles, from Primary Human Fetal Hepatocytes Infected with Hepatitis B Virus

  • Shim, Jae-Kyoung;Kim, Dong-Wook;Chung, Tae-Ho;Kim, June-Ki;Suh, Jeong-Ill;Park, Chun;Lee, Young-Choon;Chung, Tae-Wha;Song, Eun-Young;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.186-192
    • /
    • 2001
  • A primary culture of human fetal hepatocytes was obtained through a therapeutic abortion process at 26 weeks of gestation period. More than $10^8$ cells were seeded on a plastic plate. These hepatocytes were infected with hepatitis B virus (HBV). The HBV was purified from serum of one chronic HBV carrier. Transformed hepatocytes were subcultured in a 10% FBS-supplemented medium. The morphology of the transformed cell was epithelial-like. The cells from the first pass showed signs of early proliferation and had a latent period of more than 3 months after 6-7 passages. After the rest period, the transformed cell proliferated actively and they were subcultured every three days. Transformed hepatocytes were characterized by detection of the HBV transcript by RT-PCR. The secretion of virions from transformed cells was investigated by PCR with the cell medium. Two types of virions secreted into the culture medium were examined by using the transmission electron microscope. Another approach to study the secretion of virions in to culture medium was carried out with HBV antibody. HBsAg was detected in the culture medium of transformed cells using ELISA and Western blot analyses. These data suggested that the human fetal hepatocyte cell line has been established by infection of HBV, in which this cell line secreted viral particles into the culture medium.

  • PDF

Enhancement of Antigen-specific Antibody and $CD8^+$ T Cell Responses by Codelivery of IL-12-encapsulated Microspheres in Protein and Peptide Vaccination

  • Park, Su-Hyung;Chang, Jun;Yang, Se-Hwan;Kim, Hye-Ju;Kwak, Hyun-Hee;Kim, Byong-Moon;Lee, Sung-Hee;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.186-196
    • /
    • 2007
  • Background: Although IL-12 has been widely accepted to playa central role in the control of pathogen infection, the use of recombinant IL-12 (rIL-12) as a vaccine adjuvant has been known to be ineffective because of its rapid clearance in the body. Methods: To investigate the effect of sustained release of IL-12 in vivo in the peptide and protein vaccination models, rIL-12 was encapsulated into poly ($A_{DL}$-lactic-co-glycolic acid) (PLGA). Results: We found that codelivery of IL-12-encapsulated microspheres (IL-12EM) could dramatically increase not only antibody responses, but also antigen-specific $CD4^+\;and\;CD8^+$ T cell responses. Enhanced immune responses were shown to be correlated with protective immunity against influenza and respiratory syncytial virus (RSV) virus challenge. Interestingly, the enhancement of $CD8^+$ T cell response was not detectable when $CD4^+$ T cell knockout mice were subjected to vaccination, indicating that the enhancement of the $CD8^+$ T cell response by IL-12EM is dependent on $CD4^+$ T cell "help". Conclusion: Thus, IL-12EM could be applied as an adjuvant of protein and peptide vaccines to enhance protective immunity against virus infection.

P16INK4a Immunostaining but Lack of Human Papilloma Virus Type 16 in Cutaneous Squamous Cell Carcinoma and Basal Cell Carcinoma: a Report from West Iran

  • Ramezani, Mazaher;Abdali, Elham;Khazaei, Sedigheh;Vaisi-Raygani, Asad;Sadeghi, Masoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1093-1096
    • /
    • 2016
  • The tumor suppressor p16 is a biomarker for transforming human papilloma virus (HPV) infections that can lead to contradictory results in skin carcinomas. The aim of this study was to evaluate p16 expression and HPV-16 infection in the cutaneous basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This case-control study was performed on paraffin blocks of BCCs and SCCs and normal skin (53, 36, and 44 cases, respectively), between 2006 to 2015. Initial sections for groups were stained with hematoxylin and eosin (H & E). Immunohistochemistry was performed for p16 expression and human papilloma virus type 16 (HPV-16) infection. Normal group was skin of mammoplasty specimens and normal skin tissue in the periphery of tumors. The mean age at diagnosis was 42.1, 61.7 and 71.4 years for normal, BCC and SCC groups, respectively. P16 positivity was more in SCC and BCC groups compared to normal group (P<0.05) and HPV was negative in all patients in three groups. Also, the mean age at diagnosis and P16-positivity were higher for the SCC group than the BCC group (P<0.005). In conclusion, in non-melanoma skin cancers (SCC and BCC), p16-positivity can be a prognostic factor but there is no correlation between HPV-16 and p16 in these tumors.

Effects of Excretory/Secretory Products from Clonorchis sinensis and the Carcinogen Dimethylnitrosamine on the Proliferation and Cell Cycle Modulation of Human Epithelial HEK293T Cells

  • Kim, Eun-Min;Kim, June-Sung;Choi, Min-Ho;Hong, Sung-Tae;Bae, Young-Mee
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.3
    • /
    • pp.127-132
    • /
    • 2008
  • Clonorchis sinensis is one of the most prevalent parasitic helminths in Korea. Although cholangiocarcinoma can be induced by C. sinensis infection, the underlying mechanism is not clearly understood. To assess the role of C. sinensis infection in carcinogenesis, an in vitro system was established using the human epithelial cell line HEK293T. In cells exposed to the excretory/secretory products (ESP) of C. sinensis and the carcinogen dimethylnitrosamine (DMN), cellular proliferation and the proportion of cells in the G2/M phase increased. Moreover, the expression of the cell cycle proteins E2F1, p-pRb, and cyclin B was dramatically increased when ESP and DMN were added together. Similarly, the transcription factor E2F1 showed its highest level of activity when ESP and DMN were added simultaneously. These findings indicate that DMN and ESP synergistically affect the regulation of cell cycle-related proteins. Our results suggest that exposure to C. sinensis and a small amount of a carcinogen such as DMN can promote carcinogenesis in the bile duct epithelium via uncontrolled cellular proliferation and the upregulation of cell cycle-related proteins.

Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms

  • Abraham U. Morales-Primo;Ingeborg Becker;Claudia Patricia Pedraza-Zamora;Jaime Zamora-Chimal
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.14.1-14.26
    • /
    • 2024
  • The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.

Pathogenicity and PCR detection of Vibrio tapetis in Manila clams, Ruditapes philippinarum (양식 바지락, Ruditapes philippinarum에 대한 Vibrio tapetis의 병원성과 PCR법에 의한 진단)

  • Park, Sung-Woo;Lee, Kyung-Hee
    • Journal of fish pathology
    • /
    • v.18 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Pathogenicity of Vibrio tapetis, the causative bacterium of 'brown ring disease (BRD)' was evaluated in Manila clams (Ruditapes philippinarumi by artificially 0.1 $m\ell$ infection of $1.0\times10^5$cells and $1.0\times10^8$ cells at 20 $^{\circ}C$. A PCR assay based on 16S rRNA to detect the bacteria in clam tissues was established. Accumulative mortality of clams infected with $1.0\times10^7$cells and $1.0\times10^4$ cells per an individual of the bacteria was 67.5% and 7.5%, respectively. However, the deposit of brown pigment in the inner shells by accumulation of chonchiolin was not found. The bacteria were not be able to re-isolate from the infected clams by the conventional agar plate method but were easily detected by PCR assay established in this experiment. In clams artificially infected with 10 species of Vibrio, a 414bp for V. tapetis was detected in PCR assay. The specific band in the clams infected with $1.0\times10^4$cells per an individual of V. tapetis was detected only in gills one day after the infection but never be found in any tissues including gills three days after the infection. In the case of clams infected with $1.0\times10^8$cells per an individual of V. tapetis the specific band was detected in gills and intestine one day after the infection, in all tissues three days after the infection, and then in gills and adductor muscle nine days after the infection. The PCR assay was applied to detect V. tapetis in manila clam, surf clam (Mactra veneriformis), oyster (Crassostrea gigas) and Thomas' rapa whelk (Rapana venosa) taken from Taean and Gochang from April to July 2004. The infection rates were detected to 23.1% and 9.4% in the oyster and surf clam, while manila clam and Thomas' rapa whelk were not found.

Regulatory T Cell Therapy for Autoimmune Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.8 no.4
    • /
    • pp.107-123
    • /
    • 2008
  • It has now been well documented in a variety of models that T regulatory T cells (Treg cells) play a pivotal role in the maintenance of self-tolerance, T cell homeostasis, tumor, allergy, autoimmunity, allograft transplantation and control of microbial infection. Recently, Treg cell are isolated and can be expanded in vitro and in vivo, and their role is the subject of intensive investigation, particularly on the possible Treg cell therapy for various immune-mediated diseases. A growing body of evidence has demonstrated that Treg cells can prevent or even cure a wide range of diseases, including tumor, allergic and autoimmune diseases, transplant rejection, graft-versus-host disease. Currently, a large body of data in the literature has been emerging and provided evidence that clear understanding of Treg cell work will present definite opportunities for successful Treg cell immunotherapy for the treatment of a broad spectrum of diseases. In this Review, I briefly discuss the biology of Treg cells, and summarize efforts to exploit Treg cell therapy for autoimmune diseases. This article also explores recent observations on pharmaceutical agents that abrogate or enhance the function of Treg cells for manipulation of Treg cells for therapeutic purpose.