• Title/Summary/Keyword: cell infection

Search Result 1,711, Processing Time 0.026 seconds

Effects of rumen cannulation surgery on physiological parameters and rumen fluid pH in Korean native Hanwoo cattle

  • Kim, Eunju;Kim, Seong Bum;Baek, Youl Chang;Kim, Min Seok;Choe, Changyong;Yoo, Jae Gyu;Jung, Younghun;Cho, Ara;Kim, Suhee;Do, Yoon Jung
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.221-228
    • /
    • 2018
  • Rumen cannulation is used for nutritional and microbiological research, clinical diagnosis, and rumen component transfaunation. However, the cannulation procedure can affect parameters such as complete blood count findings, serum chemistry, and rumen fluid pH. The objective of this study was to evaluate the health risks related to the rumen cannulation procedure over a 1-month period. We did not identify significant differences in red blood cell numbers or morphologies between pre- and postoperative timepoints. Moreover, no inflammation or infection was detected. Despite the absence of apparent clinical signs after surgery, serum chemistry results revealed changes in blood urea nitrogen levels and the activities of liver enzymes, including aspartate transaminase, lactate dehydrogenase, and creatinine kinase, from postoperative days 1 to 14. Rumen fluid pH, as measured from samples collected via an orogastric tube, was slightly increased after a preoperative fasting period and on postoperative day 1 but decreased thereafter from postoperative day 4, indicating a minor influence of cannulation surgery on ruminal fluid pH. This is the first study to evaluate hematological parameters and rumen pH before and after rumen cannulation surgery in Hanwoo cattle. Further research is required to better elucidate the potential effects of rumen cannulation surgery on animal health.

OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages

  • Lee, Wook-Bin;Choi, Won Young;Lee, Dong-Hyun;Shim, Hyeran;KimHa, Jeongsil;Kim, Young-Joon
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.133-138
    • /
    • 2019
  • Upon viral infection, the 2', 5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNaseL) system works to cleave viral RNA, thereby blocking viral replication. However, it is unclear whether OAS proteins have a role in regulating gene expression. Here, we show that OAS1 and OAS3 act as negative regulators of the expression of chemokines and interferon-responsive genes in human macrophages. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology was used to engineer human myeloid cell lines in which the OAS1 or OAS3 gene was deleted. Neither OAS1 nor OAS3 was exclusively responsible for the degradation of rRNA in macrophages stimulated with poly(I:C), a synthetic surrogate for viral double-stranded (ds)RNA. An mRNA sequencing analysis revealed that genes related to type I interferon signaling and chemokine activity were increased in $OAS1^{-/-}$ and $OAS3^{-/-}$ macrophages treated with intracellular poly(I:C). Indeed, retinoic-acid-inducible gene (RIG)-I- and interferon-induced helicase C domain-containing protein (IFIH1 or MDA5)-mediated induction of chemokines and interferon-stimulated genes was regulated by OAS3, but Toll-like receptor 3 (TLR3)- and TLR4-mediated induction of those genes was modulated by OAS1 in macrophages. However, stimulation of these cells with type I interferons had no effect on OAS1- or OAS3-mediated chemokine secretion. These data suggest that OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages.

Quantitative microbial risk assessment of Campylobacter jejuni in jerky in Korea

  • Ha, Jimyeong;Lee, Heeyoung;Kim, Sejeong;Lee, Jeeyeon;Lee, Soomin;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.274-281
    • /
    • 2019
  • Objective: The objective of this study was to estimate the risk of Campylobacter jejuni (C. jejuni) infection from various jerky products in Korea. Methods: For the exposure assessment, the prevalence and predictive models of C. jejuni in the jerky and the temperature and time of the distribution and storage were investigated. In addition, the consumption amounts and frequencies of the products were also investigated. The data for C. jejuni for the prevalence, distribution temperature, distribution time, consumption amount, and consumption frequency were fitted with the @RISK fitting program to obtain appropriate probabilistic distributions. Subsequently, the dose-response models for Campylobacter were researched in the literature. Eventually, the distributions, predictive model, and dose-response model were used to make a simulation model with @RISK to estimate the risk of C. jejuni foodborne illness from the intake of jerky. Results: Among 275 jerky samples, there were no C. jejuni positive samples, and thus, the initial contamination level was statistically predicted with the RiskUniform distribution [RiskUniform (-2, 0.48)]. To describe the changes in the C. jejuni cell counts during distribution and storage, the developed predictive models with the Weibull model (primary model) and polynomial model (secondary model) were utilized. The appropriate probabilistic distribution was the BetaGeneral distribution, and it showed that the average jerky consumption was 51.83 g/d with a frequency of 0.61%. The developed simulation model from this data series and the dose-response model (Beta Poisson model) showed that the risk of C. jejuni foodborne illness per day per person from jerky consumption was $1.56{\times}10^{-12}$. Conclusion: This result suggests that the risk of C. jejuni in jerky could be considered low in Korea.

Scutellaria baicalensis Inhibits Coxsackievirus B3-Induced Myocarditis Via AKT and p38 Pathways

  • Fu, Qiang;Gao, Lu;Fu, Xiao;Meng, Qinghua;Lu, Zhihong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1230-1239
    • /
    • 2019
  • Scutellaria baicalensis Georgi has been widely used in China for treatment of various diseases. This study investigated the effect of Scutellaria baicalensis Georgi extracts (SBE) against Coxsackievirus B3 (CVB3)-induced myocarditis in vitro and in vivo. In vitro, Hela cells and primary myocardial cells were infected with CVB3 and treated with SBE ($50-800{\mu}g/ml$) and ribavirin ($200{\mu}M$) for 48 h and then determined by CCK8 assay. Real-time PCR and western blotting assays were performed. In vivo, a myocarditis model was induced in male BALB/c mice by injecting CVB3 suspension intraperitoneally for three times, followed by treatment with SBE (400 and 200 mg/kg) and ribavirin (100 mg/kg) for 28 days. SBE ameliorated the cytotoxicity of CVB3 in Hela cells, especially at $400{\mu}g/ml$ (39.93% vs 65.67%, p < 0.05) without influencing cell growth and also significantly reduced CVB3 replication in primary myocardial cells. The levels of AKT, ERK, and p38 were increased after CVB3 infection. SBE could downregulate the expressions of AKT and p38. In vivo, the mortality rate from CVB3 reached to 66.67%, while 10.00% and 23.33% of this came after 400 and 200 mg/kg SBE treatment, respectively (p < 0.05). The CVB3 replication was obviously reduced after SBE administration from day 5. Similarly, the levels of AKT, ERK, and p38 mRNAs and proteins were increased, and SBE suppressed the expression of AKT and p38. Our study indicates that SBE is a promising potent antiviral agent against CVB3-induced myocarditis by inhibition of virus replication via depressing AKT and p38 expressions.

The Expression of Codon Optimised Hepatitis B Core Antigen (HBcAg) of Subgenotype B3 Open Reading Frame in Lactococcus lactis

  • Mustopa, Apon Zaenal;Wijaya, Sri Kartika;Ningrum, Ratih Asmana;Agustiyanti, Dian Fitria;Triratna, Lita;Alfisyahrin, Wida Nurul
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.449-458
    • /
    • 2019
  • Hepatitis B treatments using immune therapy are gaining interest because of the improvements in dendritic cell performance for antigen presentation, which induces an appropriate immune response and raises patient survival rates. This research aims to produce a significant amount of the HBcAg antigen, which can induce an immune response and have a curative effect on HBV infection. In this study, the HBV subgenotype B3 of the HBcAg gene was used, which is dominant in Indonesia. Further, Lactococcus lactis bacteria was used as the host because of its safety and tightly regulated protein expression. The codon usage for the HBcAg gene was optimized to improve protein expression in L. lactis, which is important because a codon is not random between species. The HBcAg gene is attached to a pNZ8148 plasmid and transformed into the L. lactis NZ3900 expression host. The results confirm that a positive protein band (21 kDa) in two fractions of purified HBcAg was recognized by both western blotting and dot blot hybridization, even if the HBcAg optimized codon has higher GC contents than that suggested for L. lactis expression. Overall, this research strengthens the broad use of L. lactis bacteria for any protein expression, including higher protein expression of codon optimized HBcAg gene compared to non-optimized genes. Furthermore, the improvement in the codon optimization of the HBcAg gene significantly increases the total protein expression by 10-20%, and the expression level of the codon optimized HBcAg increases 1.5 to 3.2-times that of the native HBcAg.

Optimal Timing of Zoster Vaccination After Shingles: A Prospective Study of the Immunogenicity and Safety of Live Zoster Vaccine

  • Lee, Eunyoung;Chun, June Young;Song, Kyoung-Ho;Choe, Pyoeng Gyun;Bang, Ji Hwan;Kim, Eu Suk;Kim, Hong Bin;Park, Sang Won;Kim, Nam Joong;Park, Wan Beom;Oh, Myoung-don
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Zoster vaccination is recommended for people with a history of herpes zoster (HZ), but the most effective timing of vaccine administration after zoster illness is unresolved. This prospective observational study compared the immunogenicity and safety of administering HZ vaccine at 6-12 months and 1-5 years after zoster illness. Materials and Methods: Blood samples were collected before the administration of live zoster vaccine and 6 weeks after vaccination. Varicella-zoster virus (VZV) IgG concentrations and T-cell responses were assessed by glycoprotein enzyme-linked immunosorbent assay and interferon-${\gamma}$ enzyme-linked immunospot assay (ELISPOT), respectively. Results: The baseline geometric mean value (GMV) of VZV IgG was higher in the 6-12 months group than in the 1-5 years group (245.5 IU/mL vs. 125.9 IU/mL; P = 0.021). However, the GMV increased significantly in both groups (P = 0.002 in the 6-12 months group; P <0.001 in the 1-5 years group). The results of the ELISPOT assay were not significant for differences of the GMV between baseline and 6-week post-vaccination groups, while the GMV increased significantly in both groups (P = 0.001 in the 6-12 months group; P <0.001 in the 1-5 years group). Conclusion: The immunogenicity of zoster vaccine may be similar whether administered 6-12 months, or >1 year after zoster illness. Trial Registration: ClinicalTrials.gov Identifier: NCT02704572

A study of the effectiveness of using the serum procalcitonin level as a predictive test for bacteremia in acute pyelonephritis

  • Lee, Ga Hee;Lee, Yoo Jin;Kim, Yang Wook;Park, Sihyung;Park, Jinhan;Park, Kang Min;Jin, Kyubok;Park, Bong Soo
    • Kosin Medical Journal
    • /
    • v.33 no.3
    • /
    • pp.337-346
    • /
    • 2018
  • Objectives: Serum procalcitonin (PCT) is a specific biomarker that rises after bacterial infection, and levels of PCT are known to correlate with the severity and mortality of patients with pneumonia and sepsis. However, the usefulness of PCT levels in acute pyelonephritis is unknown. This study aimed to evaluate the effectiveness of using the PCT level as a predictive test for bacteremia in acute pyelonephritis. Methods: Between January 2012 and June 2013, 140 patients diagnosed with acute pyelonephritis were admitted to Haeundae Paik Hospital. Serum PCT, C-reactive protein (CRP), and white blood cell (WBC) levels at pre- and post- treatment were measured. Blood and urine cultures were obtained from all patients. The levels of PCT, CRP, and WBCs were each compared between the blood culture-positive and blood culture-negative groups to assess their effectiveness in predicting bacteremia. Results: Pre-treatment PCT level was 0.77 ng/mL (95% CI: 0.42-1.60 ng/mL) in the blood culture-negative group and 4.89 ng/mL (95% CI: 2.88-9.04 ng/mL) in the blood culture-positive group, and the increase between the two groups was statistically significant. The area under the receiver operating characteristic curve of PCT level for prediction of bacteremia was 0.728. A cut-off value of 1.23 ng/mL indicated a sensitivity of 79.0 % and specificity of 60.0 % for PCT level. Conclusions: Serum PCT level is a useful predictive test for bacteremia in acute pyelonephritis. Through the early detection of bacteremia, serum PCT level can help estimate the prognosis and predict complications such as sepsis.

Valeriana jatamansi Jones Inhibits Rotavirus-Induced Diarrhea via Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway

  • Zhang, Bin;Wang, Yan;Jiang, Chunmao;Wu, Caihong;Guo, Guangfu;Chen, Xiaolan;Qiu, Shulei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1115-1122
    • /
    • 2021
  • Rotavirus (RV), as the main cause of diarrhea in children under 5 years, contributes to various childhood diseases. Valeriana jatamansi Jones is a traditional Chinese herb and possesses antiviral effects. In this study we investigated the potential mechanisms of V. jatamansi Jones in RV-induced diarrhea. MTT assay was performed to evaluate cell proliferation and the diarrhea mice model was constructed using SA11 infection. Mice were administered V. jatamansi Jones and ribavirin. Diarrhea score was used to evaluate the treatment effect. The enzyme-linked immunosorbent assay was performed to detect the level of cytokines. Western blot and quantitative reverse transcription-PCR were used to determine protein and mRNA levels, respectively. Hematoxylin-eosin staining was applied to detect the pathological change of the small intestine. TdT-mediated dUTP nick-end labeling was conducted to determine the apoptosis rate. The results showed V. jatamansi Jones promoted MA104 proliferation. V. jatamansi Jones downregulated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in protein level, which was consistent with the immunohistochemistry results. Moreover, V. jatamansi Jones combined with ribavirin regulated interleukin-1β (IL-1β), interferon γ, IL-6, tumor necrosis factor α, and IL-10, and suppressed secretory immunoglobulin A secretion to remove viruses and inhibit dehydration. V. jatamansi Jones + ribavirin facilitated the apoptosis of small intestine cells. In conclusion, V. jatamansi Jones may inhibit RV-induced diarrhea through PI3K/AKT signaling pathway, and could therefore be a potential therapy for diarrhea.

Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium

  • Mechesso, Abraham F.;Quah, Yixian;Park, Seung-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Background: Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods: The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results: Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion: Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.

Induction of Systemic Resistance against Bacterial Leaf Streak Disease and Growth Promotion in Rice Plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8

  • Hata, Erneeza Mohd;Yusof, Mohd Termizi;Zulperi, Dzarifah
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 µmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.