• Title/Summary/Keyword: cell growth yield

Search Result 420, Processing Time 0.035 seconds

EFFECTS OF CIMATEROL ON THE GROWTH PERFORMANCE, CARCASS CHARACTERISTICS AND TISSUE METABOLISM IN BROILER CHICKS FED DIFFERENT DIETARY ENERGY

  • Kim, Y.G.;Han, I.K.;Ha, J.K.;Choi, Y.J.;Lee, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 1994
  • This study was a sequential experiment consisting if feeding trial and in vitro culture studies. Feeding was conducted by $2{\times}2{\times}2$ factorial design with two cimaterol levels (0, 0.25 mg/kg), two energy levels (3,200, 2,900 ME kcal/kg) and two sexes. In starting period (0-21 days) broilers were fed diets containing two energy level without dietary supplementation of cimaterol. During finishing period (21-42 days) cimaterol groups were fed cimaterol supplemented diets. In vitro cultures were carried out to study the cellular metabolism of protein and fat in liver and adipose tissues prepared from chicks used in feeding trials. Body weight gain was significantly improved by the administration of cimaterol to experimental diets by 2.4% (p < 0.05). Feed intake was reduced by cimaterol administration at the high energy level, but this trend was reversed at low energy level. Feed efficiency was improved by cimaterol administration and at high energy level the difference (5.7%) was significant(p < 0.05). The administration of cimaterol had no effects on percentage of abdominal fat content, giblet and neck. There was little difference in carcass yield between control and cimaterol treated group. The administration of cimaterol had no effects on nutrient metabolizability or carcass composition. The results of in vitro studies with liver tissues showed that cimaterol increased the lipolytic activities (p < 0.05) and decreased lipogenic activities (p < 0.05). In in vitro studies with acinar cell of liver tissues. cimaterol increased the amount of retained protein and decreased secreted protein at high energy level. but the trend was opposite at low energy level.

Enhancement of Immune Activities of Opuntia ficus-indica L. Miller by Ultrasonification Extraction Process (제주 손바닥 선인장의 초음파 추출을 통한 면역활성 증진)

  • Kwon, Min-Chul;Han, Jae-Gun;Jeong, Hyang-Suk;Qadir, Syed Abdul;Choi, Young-Beom;Ko, Jung-Rim;Lim, Tae-Il;Lee, Hyeon-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Immune activities of Opuntia ficus indica L. Miller were investigated through aqueous extracts associated with ultrasonification process at $60^{\circ}C$, and showed the highest promotion of human B and T cell growth, up to 52% and 41%, respectively, compared to the control. The secretion of TNF-${\alpha}$ and IL-60 was also enhanced by the addition $(0.5mg/m{\ell})$ of the extracts, up to 48%. NK cell activation was significantly improved up to 1.3 times higher than the case of adding other extracts. It was also found that extracts from O. ficus indica could yield higher nitric oxide production from macrophage than Lipopolysaccaharides (LPS). It can be concluded that, in general, the extracts treated with ultrasonification has higher Immune acitivities than others, possibly by higher yielding immune-modulatory than conventional extraction process. The optimum condition for the extraction of O. ficus-indicais water extraction associated with ultrasonification.

Characteristics of Polycyclic Aromatic Hydrocarbons Degradation by Stenotrophomonas maltophilia (Stenotrophomonas maltophilia에 의한 방향족 화합물의 분해특성)

  • Choi, Chang-Seok;Lee, Tae-Jin;Park, Jin-Hee;Kim, Young-Sik;Kim, Jin-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.130-137
    • /
    • 2003
  • In this study, Isolation was attempted to acquire a phenol utilizing bacterium for PAH degradation and to investigate the characteristics of PAH degradation. The isolate was identified by BIOLOG test as Stenotrophomonas maltophilia. Lower first order reaction constant was detected in the presence of lower phenol concentration. The yield coefficient of phenol was 0.1447mg cell/mg phenol. In the presence of naphthalene and phenol, phenol degradation was favorable. The isolate was capable of utilize naphthalene and phenanthrene as growth substrate but PAH, containing over 4-ring structure such as pyrene, was not degradable. The possible phenanthrene degradation pathway would be the addition of two hydroxy group on C-1 and C-2 position, followed by ortho cleavage, and then decarboxylation.

  • PDF

Isolation of $\alpha$-Amylase Hyperproducing Strain HG4 from Bacillus sp. and Some Properties of the Enzyme ($\alpha$-Amylase 생산성이 높은 Bacillus sp. HG4의 분리 및 효소 특성)

  • 김무성;오평수
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.464-469
    • /
    • 1991
  • An $\alpha$-amylase producing bacterium, strain 2B, was isolated from soil and identified to genus Bacillus. To enhance $\alpha$-amylase productivity, strain 2B was mutagenized successively with nitrosoguanidine. For an efficient selection of a-amylase hyperproducers, mutants which produced $\alpha$-amylase in the presence of glucose were isolated. The resultant mutant HG4, which was classified as constitutive and catabolite derepressed hyperproducer of a-amylase, produced about 30 folds more $\alpha$-amylase than parental strain in medium containing lactose as carbon source. The strain HG4 grew rapidly and produced enzyme in parallel with cell growth. Moreover, its cell lysis did not occur until time of maximal yield of enzyme, which was considered to be a favorable characteristic for the production and purificiation of enzyme in industrial scale. The enzymatic properties of parental strain 2B and mutant strain HG4 were almost the same. The optimal temperature and pH for enzyme reaction was $70^{\circ}C$ and pH 6.0, respectively, in 'the presence of 0.6mM $Ca^[2+}$ as an effective stabilizer.

  • PDF

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009

  • Koh, Hyun Gi;Jeong, Yong Tae;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.378-386
    • /
    • 2022
  • Scenedesmus obliquus ABC-009 is a microalgal strain that accumulates large amounts of lutein, particularly when subjected to growth-limiting conditions. Here, the performance of this strain was evaluated for the simultaneous production of lutein and biofuels under three different modes of cultivation - photoautotrophic mode using BG-11 medium with air or 2% CO2 and heterotrophic mode using YM medium. While it was found that the highest fatty acid methyl ester (FAME) level and lutein content per biomass (%) were achieved in BG-11 medium with CO2 and air, respectively, heterotrophic cultivation resulted in much higher biomass productivity. While the cell concentrations of the cultures grown under BG-11 and CO2 were largely similar to those grown in YM medium, the disparity in the biomass yield was largely attributed to the larger cell volume in heterotrophically cultivated cells. Post-cultivation light treatment was found to further enhance the biomass productivity in all three cases and lutein content in heterotrophic conditions. Consequently, the maximum biomass (757.14 ± 20.20 mg/l/d), FAME (92.78 ± 0.08 mg/l/d), and lutein (1.006 ± 0.23 mg/l/d) productivities were obtained under heterotrophic cultivation. Next, large-scale lutein production using microalgae was demonstrated using a 1-ton open raceway pond cultivation system and a low-cost fertilizer (Eco-Sol). The overall biomass yields were similar in both media, while slightly higher lutein content was obtained using the fertilizer owing to the higher nitrogen content.

Effect of Omeprazole on Membrane P-Type ATPase and Peptide Transport in Helicobacter pylori

  • KI, MI-RAN;SOON-KYU YUN;SE-YOUNG HWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.235-242
    • /
    • 1999
  • We investigated the growth-inhibitory mechanism of Helicobacter pylori by omeprazole (OMP) and its activated sulfenamide (OAS). Using dithiothreitol (DTT) and 5,5'-dithio-bis[2-nitrobenzoic acid] (DTNB; Ellman's reagent), we first determined the relationship between the binding capacity of these compounds to H. pylori membrane and its significance to membrane P-type ATPase activity. After incubation of the intact H. pylori cells with either OMP or OAS, the residual quantity of free SH-groups on the cell membrane was measured, and, the resulting values were plotted as a function of time. From this experiment, we found that there was a considerable difference in the membrane-binding rates between OMP and OAS. At neutral pH, the disulfide bond formation on H. pylori membrane was completed within 2 min of incubation of the intact cells with OAS. By OMP, however, it was gradually formed, exceeding 10 min of incubation for completion, whereby, the extent of P-type ATPase inhibition appeared to be proportional to the disulfide forming rate. From this data, it was suggested that the disulfide formation might directly affect enzyme activity. Since OMP per se cannot yield a disulfide bond with cysteine, it is predicted that the enzyme inactivation must be caused by the OAS form. Accordingly, we postulated that, under the neutral pH, OMP could be converted to OAS in the course of transport. By extrapolating the inhibitory slopes, we could evaluate K₁ values, relating to their minimal inhibitory concentrations (MICs) for H. pylori growth. In these MIC ranges, H. pylori uptake or vesicular export of nutrients such as peptides were totally prohibited, but their effect in Escherichia coli were negligible. From these observations, we strongly suggest that the P-type ATPase activity is essential for the survival of H. pylori cells in particular.

  • PDF

Isolation and Identification of Cellulomonas fimi, Characteristics of its Cellulase and Conversion of the Sawdust into Ethanol (Cellulomonas fimi의 분리(分離) 및 동정(同定), cellulase 특성(特性)과 톱밥의 Ethanol 전환(轉換))

  • Lee, Chan-Yong;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.98-105
    • /
    • 1985
  • In the sheep and cattle's rumen, facultative anaerobic cellulolytic bacteria were isolated by using Hungate's roll tube technique. In the 21 isolated species, one was screened by its strong cellulolytic activity and identified as Cellulomonas fimi C-14 by investigate morphological, cultural, physiological characteristics and electron microgram. Optimum conditions of the cell growth and enzyme production were pH 6.5 an $30^{\circ}C$, Thiamine and biotin support a good growth of C. fimi C-14. In the enzyme activities, Crystalline cellulose hydrolyzing activity, CMCase activity and ${\beta}-glucosidase$ activity were 20.6, 226.6 and 0.56$(unit{\times}10^3/ml)$ at pH 6.0, $40^{\circ}C$. By addition of fungal cellulase, enzyme activity was increased. Simultaneous Saccharification Fermentation is better than two step fermentation in ethanol yield with Saccharomyces cerevisiae DY2.

  • PDF

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Lee, Eun-Jung;Min, Kyung-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.400-406
    • /
    • 2012
  • To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-$H_2/l/h$. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81mol-$H_2/mol$-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 $h^{-1}$ when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photo-fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-$H_2/l/h$, which was achievable in a sustainable manner.

Yield Decrease of Tall Fescue ( Festuca arundinacea Schreb. ) by Pathogenic Fungi and its Control by Antagonistic Bacteria (병원성사상균에 의한 Tall Fescue ( Festuca arundinacea Schreb. ) 의 수량 손실과 길항 미생물에 의한 그 방제)

  • Choi, Ki-Chun;Song, Chae-Eun;Lee, Joung-Kyong;Kim, Jong-Hyun;Rhee, Young-Hwan;Youn, Chang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • This study was conducted to investigate the effects of antagonistic bacteria and pathogenic fungi on the growth of tall fescue(Festuca arundinacea Schreb.) in continuous cropping soil(CCS) and non-continuous cropping soil(NCCS). Tall fescue was established by seeding into pots of 11 cm in diameter and 9 cm in depth containing 1 : 1 mixture of soil and vermiculite, and cultivated at pots with antagonistic bacteria and pathogenic fungi in a vinyl house. The bacteria used in this study were Bacillus subtilis and hsants. B. subtilis was isolated and identified kern forage rhizosphere soil and fusants were isolated through cell hsion from B. subtilis and B. thwingiensis. B. subtilis was named as B. subtilis 101 and hsants were named as F-3, F-7 and F-8. In dark culture experiment, tall fescue inoculated with the antagonistic bacteria lived longer than that of control in both CCS and NCCS. However, tall fescue of CCS lived shorter than that of NCCS. Dry weight of tall fescue inoculated with the antagonistic bacteria was higher than that of tall fescue inoculated with pathogenic hngi in both CCS and NCCS(P< 0.05), and the antagonistic bacteria showed positive effects on the growth of tall fescue. However, Dry weight of tall fescue was decreased by the inoculation of the pathogenic b g i in both CCS and NCCS(P< 0.05).

  • PDF