• Title/Summary/Keyword: cell growth yield

Search Result 420, Processing Time 0.028 seconds

Production of Microbial-Transglutaminase [MTG] from Streptoverticillium mobaraense

  • Wang, Hong-Wei;Kim, In-Hae;Park, Chang-Su;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.322-327
    • /
    • 2007
  • Mineral salts in medium usually profoundly influence microorganism growth and protein synthesis. In order to produce microbial transglutaminase (MTG) with a high yield from Streptoverticillium mobaraense, we screened the minerals $CaCl_2,\;CoCl_2,\;FeSO_4,\;ZnSO_4,\;MnSO_4\;and\;CuSO_4$ for MTG fermentation. The results indicated that appropriate $FeSO_4$ concentrations could significantly promote cell growth and stimulate the production of MTG. With 15 mg/L of $FeSO_4$ added to medium, 58% improvements were noted in MTG productivity (2.24 U/mL). NaCl, $CaCl_2,\;and\;CoCl_2$ enhanced MTG productivity by less than 15%, and the optimal concentrations were determined as 1 g/L, 2 g/L, and 30 mg/L respectively. Furthermore, it was determined that 7.5 mg/L of $ZnSO_4$ in medium could augment MTG productivity by 20% and induce the stationary phase for MTG production to a period 24 hr earlier. This basic and novel discovery should result in the development of a good complement to the previously defined culture media for MTG fermentation.

고분자량의 pullulan 생산을 위한 발효공정의 최적화

  • Kim, Seong-Gu;Lee, Ji-Hyeon;Kim, Jeong-Hwa;Kim, Mi-Ryeong;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.45-50
    • /
    • 2000
  • For the maximum production of pullulan from glucose as a carbon source, the effects of glucose concentration, pH and dissolved oxygen concentration on the cell growth and mass production of high-molecular weight pullulan by A. pullulans ATCC 42023 were evaluated. A. pullulans showed optimum pullulan productivity when glucose concentration was 0.3M (54g/L). And inhibitory effects on the cell growth and the pullulan production were observed at the glucose concentration higher than 0.3M (54g/L). The influence of pH control and dissolved oxygen on the pullulan production and growth of A. pullulans was studied. In shake-flasks, maximum pullulan production was obtained with $11.98g/{\ell}$ when initial pH was 6.5. In the batch fermentation, the maximum pullulan production of $13.31g/{\ell}$ was obtained with constant pH 4.5. And it was found that pullulan yield and synthesis rate increased with oxygen availability. For the production of commercially useful pullulan with high-molecular weight, a mixed carbon source, which was a mixture of glucose and glucosamine, was used for the pullulan fermentation with A. pullulans. On the basis of 5% mixed carbon source, culture with 3% glucosamine with 2% glucose was optimum condition for the production of high (M.W.> 1,000,000) and medium (M.W.> 200,000) molecular weight pullulan with considerable yields of cell mass and product. And the influence of pH control on the molecular weight of pullulan was studied in batch fermentation. It was found that the productivity of high-molecular weight pullulan with pH control at 6.5 was higher than that with no pH control.

  • PDF

Candida tropicalis에 의한 Xylose 와 Glucose로부터 Xylitol 생산

  • 오덕근;김상용
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.495-500
    • /
    • 1997
  • Xylitol production from xylose and glucose was investigated using Candida tropicalis KFCC-10960. As glucose concentration in xylose medium was increased, ethanol production increased. However, xylitol production was maximum at glucose concentration of 10 g/l. The concentrated cells grown on xylose or glucose were inoculated in xylose medium. The specific activities of xylose reductase and xylitol dehydrogenase, and xylitol production in concentrated cells grown on glucose were the same as those in concentrated cells grown on xylose. The results suggested that cells grown on glucose had the same xylitol producing activity as those grown on xylose. By feeding glucose in xylose medium, cell growth was achieved from glucose and xylitol production was obtained from xylose. By using this technique, a final xylitol concentration of 261 g/l was achieved from 300 g/l xylose in 41 hours which corresponded to a xylitol yield from xylose of 87% and a xylitol productivity of 6.37 g/1-h.

  • PDF

Production of Lipocortin-1$_{1-185}$ Using A Recombinant of Escherichia coli.

  • Lee, Kyung-Il;Oh, Kyung-Hee;Lee, Jung-Hyun;Na, Do-Sun;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.123-126
    • /
    • 1997
  • The aim of the present study was to optimize culture condition for the expression of lipocortin-1$_{1-185}$ in a recombinant of Escherichia coli using batch system. Plasmid (pHT22) carrying lipocortin-1$_{1-185}$ gene was well maintained in the recombinant with the addition of amplicillin as a selection pressures. Optimum temperature was 28$^{\circ}C$ for seed culture and 4$0^{\circ}C$ for main culture and the optimum pH was 7.0. The production of Lipocortin-1$_{1-185}$ was closely associated with cell growth and related to plasmid amplification.

  • PDF

Development of complete Culture System for Quail Embryos and Its Application for Embryo Manipulation

  • Ono, T.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.155-163
    • /
    • 2001
  • Gene and cell transfer technique will serve as a powerful tool for the genetic improvement of the poultry and to yield useful products. For avian transgenesis, Japanese quail may serve as an excellent animal model because of its small body size and fast growth rate. Recent progress was described on the manipulation of quail embryos such as the introduction of foreign genes and cells, and the subsequent culturing of the manipulated embryos yielding hatchlings. Intraspecific donor-derived offspring have been available in quail, however, further investigation will be required to obtain interspecific offspring with the aim of rescuing endangered species. Trans genesis will also be useful for improving the profitability and quality of poultry stocks and for developing stocks with novel uses. Considerable progress should soon be made toward the production of transgenic poultry. The key feature of the procedure described here is that embryos are initially taken out from the shell for ease of manipulation and then placed back in culture in addition to various operations midway during culture.

  • PDF

Production of Red Pigments by Monascus purpureus in Solid-state Culture

  • Lee Bum-Kyu;Piao Hai Yan;Chung Wook-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 2002
  • To maximize and sustain the productivity of Monascus pigments, various environmental and nutritional parameters, such as the initial moisture content, pH, inoculum size, sample size, and nutrient supplement, that influence pigment production were evaluated in solid-state cultures as follows: initial moisture content, $50\%;$ pH, 6.0; inoculum size $1\;\times\;10^4$ spore cells $(grams\;of\;dry\;solid\;substrate)^{-1};$ sample size, 300 g. All supplementary nutrients (carbon, nitrogen, and mineral sources) added has inhibitory effects on the cell growth and red pigment production. In open tray culture the maximum biomass yield and specific productivity of red pigments were 223 mg DCW $(grams\;of\;initial\;dry\;substrate)^{-1}$ and, $47.6\;OD_{500}\;(DCW\;grams)^{-1}h^h{-1}$ respectively.

Cultivation of Cells on Cytodex 1 Microcarrier Culture (Cytodex 1을 이용한 Microcarrier 배양법에서의 세포의 증식성 조사)

  • Kim, Jai-hong;Ree, Young-ok;Park, Bong-kyun;Namgoong, Sun;Choi, Chung-ok
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.2
    • /
    • pp.259-264
    • /
    • 1986
  • Microcarrier culture technics are widely used for the massive production of the vertebrate animal cells. In this study, attempt was made to establish the microcarrier cell culture system using Cytodex. Various factors affecting the growth of cells on microcarrier culture were also discussed. In conclusion, the yield of cells in microcarrier culture was several times greater than those in roller bottle and flask culture methods, based on the volume of culture media.

  • PDF

Characters of Extracellular $\beta$-Lactamase Obtained from a Strain of Streptomyces sp. (방선균의 일주가 생성하는 균체외 $\beta$-Lactamase의 특성)

  • 문상범;이계준
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.439-443
    • /
    • 1991
  • A strain of Streptomyces sp. isolated from soil was found to produce extra-cellular $\beta$-lactamase associated partially to the cell growth. The $\beta$-lactamase was purified from the culture supernatant through anmonium sulfate fractionation, ion-exchange chromatographies and gel filtration. The final purification fold and recovery yield were 57 and 6.2%, respectively. Molecular weight of the $\beta$-lactamase was estimated to be about 67, 000 by SDS-polyacrylamide gel electrophoresis. The optimal reaction condition was at pH 7-8 and at 35-$45^{\circ}C$. The $K_m$ and $V_{max}$ values of the enzyme for penicillin G were estimated to he 3 mM and $3\times 10^3$ $\mu\textrm{M}$/min/mg protein, respectively. The purified $\beta$-lactamase was classified to the class A enzyme hydrolyzing only penicillin.

  • PDF

Effect of Dissolved Oxygen Concentration on the Metabolism of Glucose in Pseudomonas putida BM014

  • Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.109-111
    • /
    • 1998
  • The effect of dissolved oxygen concentration on the metabolism of glucose in Pseudomonas putida BM014 was investigated. Glucose was completely converted to 2-ketogluconate via extracellular oxidative pathway and then taken up for cell growth under the condition of sufficient dissolved oxygen concentration. On the other hand, oxygen limitation below dissolved oxygen tension (DOT) value of 20% of air saturation caused the shift of glucose metabolism from the extracellular oxidative pathway to the intracellular phosphorylative pathway. Specific activities of hexokinase and gluconate kinase in intracellular phosphorylation pathway decreased as the DOT increased, while 2-ketogluconokinase activity in extracellular oxidative pathway increased under the same condition. This result can be usefully applied to microbial transformation of glucose to 2-ketogluconate, the synthetic precursor for iso-vitamine C, with almost 100% yield via extracellular oxidation by simple DOT control.

  • PDF

Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production

  • Rodrigues, Maria Elisa;Costa, Ana Rita;Fernandes, Pedro;Henriques, Mariana;Cunnah, Philip;Melton, David W.;Azeredo, Joana;Oliveira, Rosario
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1308-1321
    • /
    • 2013
  • The emergence of microcarrier technology has brought a renewed interest in anchorage-dependent cell culture for high-yield processes. Well-known in vaccine production, microcarrier culture also has potential for application in other fields. In this work, two types of microcarriers were evaluated for small-scale monoclonal antibody (mAb) production by CHO-K1 cells. Cultures (5 ml) of microporous Cytodex 3 and macroporous CultiSpher-S carriers were performed in vented conical tubes and subsequently scaled-up (20 ml) to shake-flasks, testing combinations of different culture conditions (cell concentration, microcarrier concentration, rocking methodology, rocking speed, and initial culture volume). Culture performance was evaluated by considering the mAb production and cell growth at the phases of initial adhesion and proliferation. The best culture performances were obtained with Cytodex 3, regarding cell proliferation (average $1.85{\pm}0.11{\times}10^6$ cells/ml against $0.60{\pm}0.08{\times}10^6$ cells/ml for CultiSpher-S), mAb production ($2.04{\pm}0.41{\mu}g/ml$ against $0.99{\pm}0.35{\mu}g/ml$ for CultiSpher-S), and culture longevity (30 days against 10-15 days for CultiSpher-S), probably due to the collagen-coated dextran matrix that potentiates adhesion and prevents detachment. The culture conditions of greater influence were rocking mechanism (Cytodex 3, pulse followed by continuous) and initial cell concentration (CultiSpher-S, $4{\times}10^5$ cells/ml). Microcarriers proved to be a viable and favorable alternative to standard adherent and suspended cultures for mAb production by CHO-K1 cells, with simple operation, easy scale-up, and significantly higher levels of mAb production. However, variations of microcarrier culture performance in different vessels reiterate the need for optimization at each step of the scale-up process.