• Title/Summary/Keyword: cell growth assay

Search Result 1,257, Processing Time 0.031 seconds

Anti-tumor Effect of a Combination of Hongyoung Ethanol Extract and Cisplatinin YD-10B Oral Cancer Cells (YD-10B 구강암세포에서 홍영 에탄올 추출물과 시스플라틴 병용에 의한 항암 효과)

  • Eun-Jung Kim;Sung-Hee Hwang;Sangwook Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.498-505
    • /
    • 2023
  • Solanum tuberosum Linnaeus cv Hongyoung, which represents red potato, was developed in Korea. Hongyoung is known to have anti-oxidant, anti-inflammatory, anti-viral, and anti-tumor properties, but no research has been conducted on the growth inhibition and apoptosis effects of hongyoung in YD-10B oral cancer cells. In this study, the combined treatment of hongyoung ethanol extract (HEE) and cisplatin were examined to determine its ability to inhibit cancer cell growth, induce apoptosis, and inhibit matrix metalloproteinases (MMP)-2 and MMP-9 cancer metastasis. The cell viability was investigated using a 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H- tetrazolium monosodium salt (MTS) assay, and the ability to induce apoptosis was analyzed using an FACS analyzer. The mRNA expression and protein activity of MMP-2 and MMP-9 were measured via RT-PCR and zymography. The YD-10B oral cancer cells showed an increase in growth inhibition as the concentration of HEE increased. The combination of 200 µM cisplatin and 500 ㎍/ml HEE reduced the growth of the YD-10B oral cancer cells by more than 50% compared to cisplatin alone. When phorbol 12-myristate 13-acetate (PMA)-treated YD-10B oral cancer cells were co-treated with 200 µM cisplatin and 500 ㎍/ml HEE, both the mRNA expression and protein activity of the MMP-2 and MMP-9 decreased. In addition, the percentage of the sub-G1 phase, which indicates apoptosis ability, more than doubled when treated in combination with 200 µM cisplatin and 500 ㎍/ml HEE than when cisplatin alone was used. The results of this study therefore suggest the possibility of using a combination of HEE and cisplatin in the development of effective drugs to treat oral cancer.

Study on Anti-inflammatory and Anti-microbial Effect of Pinus rigida Mill. inner Bark Extracts as a Cosmetic Material (리기다소나무(Pinus rigida Mill.) 내수피 추출물에 대한 화장품 소재로써의 항염 및 항균효과)

  • Jang, Min-Jung;Kim, Young-Hun;An, Bong-Jeun;Lee, Chang-Eeon;Lee, Jin-Tae;Kim, Sea-Hyun;Lee, Byung-Guen;Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.215-220
    • /
    • 2008
  • Recently, there has been a great deal of interest in the applications of plant-based extracts to both cosmetic and medicinal industries. The objective of this study was to investigate the anti-inflammatory and antimicrobial effect of P. rigida extracts by water and ethyl acetate. Anti-inflammatory and anti-microbial effect of P. rigida extracts by water and EtOAc were investigated by using nitrite scavenging ability, nitric oxide production and anti-microbial ability. In the test of nitrite scavenging ability, P. rigida extracts by water and EtOAc showed 88.7% and 99% at 100 ppm concentration, respectively. The cell viability was measured using the MTT assay at 24 hours after P. rigida extracts as shown in over 80%. Anti-inflammatory effect was examined in LPS stimulated RAW 264.7 cells. NO productions in LPS and P. rigida extracts stimulated group were decreased in a concentration and were dependent on time as compared with LPS stimulated. The water extracts showed the highest inhibition at the 100 ppm concentration. In anti-microbial activity test, the water extract with 3.0 mg/disc resulted in the clear zone of 14 mm, and ethyl acetate with that of 15 mm for Staphylococcus aureus. However, P. rigida extracts didn't show any growth inhibitory effect on Esherichia coli. These results indicate that the extracts of P. rigida have anti-inflammatory activities as a cosmeceuticals.

Isolation of Photosynthetic Bacterium, Rhodopseudomonas palustris JK-1 and Researches on IAA and Carotenoid Production (광합성세균 Rhodopseudomonas palustis 분리 및 IAA와 Carotenoid 생성에 관한 연구)

  • Kim, Yu-Kyoung;Cho, Young-Yun;Kang, Ho-Jun;Kim, Jung-Sun;Yang, Sung-Nyun;Jwa, Chang-sook
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.843-859
    • /
    • 2017
  • The JK-1 isolate which was the best producer of indole-3-acetic acid and carotenoid among the 388 strains isolated from 28 wetlands in Jeju, was identified to be Rhodopseudomonas palustirs belongs to a typical group of non sulfur purple bacteria based on 16S sRNA sequencing. This study investigated the effect of different cultural conditions of pH, temperature, agitation, light and aeration on growth, IAA and carotenoid production of photosynthetic bacterium JK-1 for optimization of IAA and carotenoid production. It was found that growth, IAA, carotenoid, and bacteriochlorophyll production with light (3,000~3,500 Lux) and agitation (100 rpm) showed better results than those with dark/static or dark/agitation (100 rpm) in anaerobic conditions. The optimal pH, temperature and agitation speed for cell growth were 7, $30^{\circ}C$, 150 rpm, for IAA production were 9, $30^{\circ}C$, 150rpm and for carotenoid production were 6, $25^{\circ}C$, 50 rpm, cultured for 72 h under anaerobic light, respectively. The growth and IAA production were high in aerobic culture compared with anaerocic culture, whereas carotenoid and bacteriochlorophyll content were decreased extremely in aerobic condition (0.5~1 vvm). Subsequently, the optimal culture conditions for JK-1 were selected with pH 7, $30^{\circ}C$ and 100 rpm under anaerobic light and the effect on plant growth was tested by pot assay. Inoculation of JK-1 with 3% (v/v) level caused increase in shoot and root dry weigh that varied from 20%~58% to 40%~28% in young radish in camparison to uninoculated treatment at 50 days of growth. The study suggests that the JK-1 isolate may serve as efficient biofertilizer inoculants to promote plant growth.

Cucurbitacin-I, a Naturally Occurring Triterpenoid, Inhibits the CD44 Expression in Human Ovarian Cancer Cells (난소암 세포주의 CD44 발현에 미치는 Cucurbitacin-I의 효과)

  • Seo, Hee Won;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.733-737
    • /
    • 2018
  • Cucurbitacin-I, a natural triterpenoid derived from Cucurbitaceae family plants, exhibits a number of potentially useful pharmacological and biological activities. Indeed, the previous study demonstrated that cucurbitacin-I reduced the proliferation of colon cancer cells by enhancing apoptosis and causing cell cycle arrest at the G2/M phase. CD44, a type I transmembrane protein with the function of adhering to cells, mediates between the extracellular matrix and other cells through hyaluronic acid. Recent studies have demonstrated that an overexpression of the CD44 membrane receptor results in tumor initiation and growth, specific behaviors of cancer stem cells, the development of drug resistance, and metastasis. The aim was to examine the effect of cucurbitacin-I on CD44 expression human ovarian cancer cells because the effect of cucurbitacin-I on CD44 expression has not been reported. The expressions of CD44 mRNA and protein were detected using a quantitative real-time reverse-transcription polymerase chain reaction and a Western blot analysis, respectively. Treatment with cucurbitacin-I inhibited the expression of CD44 mRNA and protein. A subsequent analysis revealed that cucurbitacin-I blocked the phosphorylation of activator protein-1 (AP-1) and nuclear factor kappa-B ($NF-{\kappa}B$), which are key regulators of CD44 expression. Taken together, the data demonstrate that cucurbitacin-I regulates the AP-1 and $NF-{\kappa}B$ signaling pathways, leading to decreased CD44 expression.

Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met

  • Lin, Feng-Jie;Lin, Xian-Dong;Xu, Lu-Ying;Zhu, Shi-Quan
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.856-869
    • /
    • 2020
  • To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.

(β-lapachone Regulates Tight Junction Proteins, Claudin-3 and -4, in Human Hepatocarcinoma Cells. (인체 간암세포에서 β-lapachone 처리에 의한 Tight Junction 관련 유전자의 변화)

  • Kim, Sung-Ok;Kwon, Jae-Im;Kim, Gi-Young;Kim, Nam-Deuk;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1298-1302
    • /
    • 2007
  • A hallmark of cancers is 'leaky' tight junctions (Tjs). TJs mediated paracellular permeability is elevated and TJs maintained cell polarity is frequently lost. Concomitantly, TJs-associated proteins including members of the claudin family of proteins are dysregulated. Recent findings indicate that these TJs changes can contribute to cancer progression. In this study, we examined the effects of ${\beta}-lapachone$, a quinone compound obtained from the bark of the lapacho tree (Tabebuia avellanedae), on the Tjs-associated regulators in human hepatocarcinoma cell lines, HepG2 and Hep3B. ${\beta}-lapachone$ treatment downregulated the levels of insulin-like growth factor 1 receptor (IGF-lR) proteins in both HepG2 and Hep3B cells. But the levels of claudin-3 and -4 proteins were increased in ${\beta}-lapachone$-treated HepG2 and Hep3B cells. And also the zonnula occludens-l (la-I) and p-catenin protein levels by ${\beta}-lapachone$ were increased in a time-dependent manner. However, claudin-3 and -4 mRNA levels were uninhibited by ${\beta}-lapachone$ in HepG2 and Hep3B. The present results suggest that the upregulation of claudin-3 and -4 protein levels by ${\beta}-lapachone$ occurs by a post-transcriptional mechanism and points to a novel mechanism by ${\beta}-lapachone$.

BIOLOGICAL EFFECT OF MAGNOLIA AND GINKGO BILOBA EXTRACT TO THE ANTIMICROBIAL, ANTIINFLAMMATORY AND CELLULAR ACTIVITY (후박 및 은행잎 추출물의 향균, 향염 및 세포활성도에 미치는 영향)

  • Chung, Chong-Pyuong;Ku, Young;Bae, Ki-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.478-486
    • /
    • 1995
  • Periodontal therapy for treatment of periodontitis involves the elimination of bacterial plaque and elimination of the anatomic defects by regenerative procedure. The purpose of this study was to evaluate on the biological effect of magnolia and Ginkgo biloba extract to the antimicrobial, antiinflammatory and cellular activity. Antimicrobial assay was performed with the diffusion method of the extract by measuring of growth inhibitory zone of B. cereus from blood agar plate. Effect of the extract to cellular activity of gingival fibroblast were examined using MTT method and measured the result with optical density on 570nm by ELISA reader. Inhibitory effects of $PGE_2$ production from gingival fibroblast was performed with the addition of $IL-l{\beta}$ and the extract to the well and examined to the product of $PGE_2$ from cell by ELISA reader. In vivo anti-inflammatory effect was performed with injection examined with clinically and histologically for their extent of mecrosis and inflammation. Antimicrobial activity of Magnolia extract showed significantly higher activity than that of control. However, GBE did not showed significant activity to compare with control, and mixture of Magnolia and GBE extract showed significantly higher activity than that of control. The effect of cellular activity to gingival fibroblast showed no significant differences of between control and Magnolia extract. However, GBE showed significantly higher rate of cellular activity to compare with control and even to PDGF-BB, and also showed same degree of cellular activity even though mixed with Magnolia extract. The inhibitory effect of $PGE_2$ production showed significantly reduction of $PGE_2$ production to compare with control, but its inhibitory effect was not much strong to compare with Indomethacin. In vivo, antiinflammatory effect of Magnolia extract to P. gingivalis injection of Hamster buccal check showed significantly reduction of inflammatory cell infiltration and tissue necrosis, but GBE showed no effect on the inhibition of inflammatory process. These results suggested that Magnolia and GBE extract possessed different kind of biological activity and also can be compensated on their activity with each other for elimination of bacterial plaque and anatonical defect.

  • PDF

Expression and Function of Calcineurin in Inflammatory Arthritis (류마티스 관절염에서 칼시뉴린의 발현과 기능)

  • Park, Bo-Hyoung;Yoo, Seung-Ah;Hong, Kyung-Hee;Hyoung, Bok-Jin;Hwang, Yu-Na;Cho, Chul-Soo;Park, Won;Kim, Wan-Uk
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.33-42
    • /
    • 2006
  • Background: Calcineurin plays a crucial role in T cell activation, cell growth, apoptosis, and angiogenesis, and its over-expression has been implicated in the pathogenesis of cardiomyopathy and stroke. However, the expression and function of calcineurin in the pathologic lesion of chronic inflammatory diseases, like rheumatoid synovium, remain to be defined. This study was aimed to determine the role of calcineurin in inflammatory arthritis and investigate the expression and function of calcineurin in the rheumatoid synovium and synoviocytes, the actual site of chronic inflammation. Methods: Immuno-histochemical staining using specific antibody to calcineurin was perfomed in the synovium of rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS) from RA and osteoarthritis (OA) patients were isolated from RA and OA patients, and cultured with IL-1${\beta}$ and TNF-${\alpha}$ in the presence or absence of cyclosporin A, a calcineurin inhibitor. The calcineurin expression was assessed by phosphatase assay and Western blotting analysis. IL-6, -10, -17, matrix metalloproteinase (MMP)-1, -2, -3, and -9 released into the culture supernatants were measured by ELISA. After transfection with GFP-Cabin 1 gene into synoviocytes, the levels of IL-6 and MMPs were measured by ELISA. Results: Calcineurin was highly expressed in the lining layer of synovium and cultured synoviocytes of RA patients. The elevated calcineurin activity in the rheumatoid synoviocytes was triggered by proin flammatory cytokines such as IL-1${\beta}$ and TNF-${\alpha}$. In contrast, IL-10, an anti-inflammatory cytokine, failed to increase the calcineurin activity. The targeted inhibition of calcineurin by the over-expression of Cabin 1, a natural calcineurin antagonist, inhibited the production of IL-6 and MMP-2 by rheumatoid synoviocytes in a similar manner to the calcineurin inhibitor, cyclosporin A. Conclusion: These data suggest that abnormal activation of calcineurin in the synoviocytes may contribute to the pathogenesis of chronic arthritis, and thus provide a potential target for controlling inflammatory arthritis.

The Effects of Mechanical Stress on Alkaline Phosphatase Activity of MC3T3-E1 Cells (기계적 자극이 MC3T3-EI 세포의 Alkaline Phosphatase Activity에 미치는 영향)

  • BAE, Sung-Min;KYUNG, Hee-Moon;SUNG, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.291-299
    • /
    • 1996
  • Orthodontic force is a mechanical stress controlling both of tooth movement and skeletal growth. The mechanical stress stimulate bone cells that may exert some influence on bone remodeling. The purpose of this study was to evaluate the difference in cellular activity depending on mechanical stresses such as compressive and tensile force by determining the alkaline phosphatase(ALP) activity. A clonal osteogenic cell line MC3T3-E1 was seeded into a 24-well plate($2{\times}10^4/well$). At the confluent phase, a continuous compressive hydrostatic pressure($25g/cm^2$, $300g/cm^2$) and continuous tensile hydrostatic pressure($-25g/cm^2$, $-300g/cm^2$) were applied for 4, 6, 10, 14, 18, 20 days respectively by a diaphgragm pump. At the end of the stimulation period, cell layers were prepared for ALP activity assay. The ALP activity of the compressive group increased more than that of the tensile group at same force magnitude, whereas the cells responded to a similar pattern regardless of the type of mechanical stress The ALP activity of the compressive and tensile group turned into the level of the control group as the length of time increased. These results indicated that a mechanical stress may be more effective on cellular activity during active cellular proliferation and differentiation periods. The time to achieve maximum ALP activity was delayed as the mechanical stress increased in both the compressive and the tensile group. Accordingly, the magnitude of the stress rather than the type of mechanical stress may have more influence on cellular activity.

  • PDF

Effects of Cheongpyesagan-tang and YKK012 on in vitro and in vivo Colon Cancer Cell Growth with and without CPT-11 (청폐사간탕(淸肺瀉肝湯)과 YKK012의 항암제 CPT-11과 병용투여 시 대장암 성장억제에 미치는 효과)

  • Ahn, Hun-Mo;Han, Sang-Yong;Kim, Ji-Hoon;Rho, Tae-Won;Chong, Myong-Soo;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2015
  • Objectives : The aim of this study was to evaluate the antitumor effects of Cheongpyesagan-tang(CST) and YKK012 on colon cancer. Methods : MTT assay was used to evaluate the cytotoxicity of Single herbs and combinations of CST and YKK012 on murine colon cancer cells, Colon 38. To explain effects of apoptosis in colon cancer, we performed the western blot. Effects of CST and YKK012 on antitumor activity of CPT-11 using the murine colon38 allograft tumor in BDF1 mice. Results : Single herbs and combinations of CST and YKK012 was tested in vitro, Rhei Radix (RH) and Scutellariae Radix (SC) and YKK012 showed dose-response cytotoxicity on Colon 38. This might be due to the apoptosis, as we see Bax and Caspase-3, which are apoptotic factors, was expressed in RH and SC treated cells. YKK012 also showed increased expression of Caspase-3. In mouse colorectal cancer xenograft model of colon38 cells, herbal combinations showed tendencies of tumor regression, but was not significant. Furthermore, because toxicity was observed in CST group, we reduced the dose of CST for the next experiment. The anti-tumor effects of herbal combinations were insufficient to be used as single anti-tumor agent. With simultaneous usage of CPT-11, contrary to that CST showed no synergistic effects, YKK012 which was composed by the combination of four $ER{\beta}$ selective herbs, significantly reduced the size of tumor and Bax expression was increased. Conclusions : We suggest YKK012 can be a effective cancer adjuvant therapy with CPT-11 on colon cancer.