• 제목/요약/키워드: cell growth, motility

검색결과 75건 처리시간 0.028초

Multiple Effects of a Novel Epothilone Analog on Cellular Processes and Signaling Pathways Regulated by Rac1 GTPase in the Human Breast Cancer Cells

  • Zhang, Hong;An, Fan;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.109-120
    • /
    • 2014
  • The epothilones are a class of microtubule inhibitors that exhibit a strong antitumor activity. UTD2 is a novel epothilone analog generated by genetic manipulation of the polyketide biosynthetic gene cluster. This study investigated the effects of UTD2 on the actin cytoskeleton and its critical regulators, and the signaling pathways which are essential for cell motility, growth and survival in MCF-7 breast cancer cells. Results showed that UTD2 inhibited the cellular functions of actin cytoskeleton, such as wound-closure, migration and invasion, as well as adhesion. Our study further demonstrated that UTD2 suppressed Rac1 GTPase activation and reduced the activity of PAK1, which is a downstream effector of Rac1, while the activity of Cdc42 was not affected. Additionally, the phosphorylation of p38 and ERK were significantly inhibited, but the phosphorylation of JNK remained the same after UTD2 treatment. Moreover, UTD2 inhibited the activity and mRNA expression of MMP-2, which plays a key role in cell motility. UTD2 also reduced the phosphorylation of Akt, which is an important signaling kinase regulating the cell survival through Rac1. Furthermore, UTD2 interrupted the synergy between Rac1 and Raf in focus formation assays. Taken together, these results indicated that UTD2 exerted multiple effects on the actin cytoskeleton and signaling pathways associated with Rac1. This study provided novel insights into the molecular mechanism of the antineoplastic and antimetastatic activities of epothilones. Our findings also suggest that the signaling pathways regulated by Rac1 may be evaluated as biomarkers for the response to therapy in clinical trials of epothilones.

SP-8356, a (1S)-(-)-Verbenone Derivative, Inhibits the Growth and Motility of Liver Cancer Cells by Regulating NF-κB and ERK Signaling

  • Kim, Dong Hwi;Yong, Hyo Jeong;Mander, Sunam;Nguyen, Huong Thi;Nguyen, Lan Phuong;Park, Hee-Kyung;Cha, Hyo Kyeong;Kim, Won-Ki;Hwang, Jong-Ik
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.331-341
    • /
    • 2021
  • Liver cancer is a common tumor and currently the second leading cause of cancer-related mortality globally. Liver cancer is highly related to inflammation as more than 90% of liver cancer arises in the context of hepatic inflammation, such as hepatitis B virus and hepatitis C virus infection. Despite significant improvements in the therapeutic modalities for liver cancer, patient prognosis is not satisfactory due to the limited efficacy of current drug therapies in anti-metastatic activity. Therefore, developing new effective anti-cancer agents with anti-metastatic activity is important for the treatment of liver cancer. In this study, SP-8356, a verbenone derivative with anti-inflammatory activity, was investigated for its effect on the growth and migration of liver cancer cells. Our findings demonstrated that SP-8356 inhibits the proliferation of liver cancer cells by inducing apoptosis and suppressing the mobility and invasion ability of liver cancer cells. Functional studies revealed that SP-8356 inhibits the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways, which are related to cell proliferation and metastasis, resulting in the downregulation of metastasis-related genes. Moreover, using an orthotopic liver cancer model, tumor growth was significantly decreased following treatment with SP-8356. Thus, this study suggests that SP-8356 may be a potential agent for the treatment of liver cancer with multimodal regulation.

Effect of electromagnetic field exposure on the reproductive system

  • Gye, Myung-Chan;Park, Chan-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권1호
    • /
    • pp.1-9
    • /
    • 2012
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and $[Ca^{2+}]i$ may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels.

Biological Effect and Chemical Composition Variation During Self-Fermentation of Stored Needle Extracts from Pinus densiflora Siebold & Zucc.

  • Paudyal, Dilli P.;Park, Ga-Young;Hwang, In-Deok;Kim, Dong-Woon;Cheong, Hyeon-Sook
    • Journal of Plant Biotechnology
    • /
    • 제34권4호
    • /
    • pp.313-322
    • /
    • 2007
  • Extract of Japanese red pine needles has been used in Asia pacific regions since long periods believing its valuable properties as tonic and ability of curing diseases of unidentified symptoms. Some selective compounds present in the extract and their effects were analyzed. Carbohydrates and vitamin c were identified using HPLC; terpenoid compounds by GC-MS; anti-bacterial analysis by paper discs, plates count and gastrointestinal motility by whole cell patch clamp. The extract is a mixture of compounds therefore its diverse effect was expected. Self-fermentation in extract proceeds after spontaneous appearance of yeast strains without inoculation. Effects and composition of the extract vary with varying period of self-fermentation. Extract inhibits the growth of bacteria dose dependently exhibiting its antibacterial properties however effectiveness increases with increase in fermentation period. The extract also can modulate gastrointestinal motility in murine small intestine by modulating pace maker currents in ICC mediated through ATP sensitive potassium channel.

ANXA2 Regulates the Behavior of SGC-7901 Cells

  • Sun, Meng-Yao;Xing, Rui-Huan;Gao, Xiao-Jie;Yu, Xiang;He, Hui-Min;Gao, Ning;Shi, Hong-Yan;Hu, Yan-Yan;Wang, Qi-Xuan;Xu, Jin-Hui;Hou, Ying-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.6007-6012
    • /
    • 2013
  • ANXA2, a member of the annexin family, is overexpressed and plays important roles in tumor development. However, the significance of ANXA2 expression in gastric carcinoma has not been clarified.To elucidate its roles in growth of gastric cancer, ANXA2 expression in SGC-7901 cells was inhibited with a designated siRNA, then cell proliferation, cell cycling, apoptosis and motility were determined by MTT assay, flow cytometry, Hoechst 33342 staining and wound healing assay, respectively. To further assess the behavior of ANXA2 deleted SGC-7901 cells, changes of microstructures were observed under fluorescence microscopy, laser scanning confocal microscopy and electron microscopy. We found that inhibition of ANXA2 expression caused cell proliferation to decrease significantly with G1 arrest, motility to be reduced with changes in pseudopodia/filopodia structure and F-actin and ${\beta}$-tubulin expression, and apoptosis to be enhanced albeit without significance. At the same time, ANXA2 deletion resulted in fewer pseudopodia/filopodia, non-stained areas were increased, contact inhibition among cells reappeared, and expression of F-actin and ${\beta}$-tubulin was decreased, with induction of polymerized disassembled forms. Taken together, these data suggest that ANXA2 overexpression is important to maintain the malignancy of cancer cells, and this member of the annexin family has potential to be considered as a target for the gene therapy of gastric carcinoma.

Inhibitory effect of Erythronium japonicum on the human breast cancer cell metastasis

  • You, Mi-Kyoung;Kim, Min-Sook;Rhyu, Jin;Bang, Mi-Ae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • 제9권1호
    • /
    • pp.17-21
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, the inhibitory effect of Erythronium japonicum extracts on the metastasis of MDA-MB-231 human breast cancer cell line was determined. MATERIALS/METHODS: Cells were cultured with DMSO or with 50, 75, 100 or $250{\mu}g/ml$ of Erythronium japonicum methanol or ethanol extract. RESULTS: Both methanol and ethanol extracts significantly inhibited the growth and induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. Erythronium japonicum extracts inhibited the adhesion of MDA-MB-231 cells. The invasion of breast cancer cells was suppressed by Erythronium japonicum extracts in a dose-dependent manner. The motility and MMP-2 and MMP-9 activities were also inhibited by both methanol and ethanol extracts. CONCLUSIONS: Our results collectively indicate that Erythronium japonicum extracts inhibit the growth, adhesion, migration and invasion as well as induce the apoptosis of human breast cancer cells. Clinical application of Erythronium japonicum as a potent chemopreventive agent may be helpful in limiting breast cancer invasion and metastasis.

대황(大黃)이 흰쥐의 위점막 손상에 미치는 영향 (Effects of Rhei Rhizoma on Gastric Ulcer in Sprague-Dawley Rats)

  • 김범회
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.71-77
    • /
    • 2011
  • Gastric ulcer has multifactorial etiology, and the development of ulcer is known to be caused by gastric acidity, pepsin secretion, gastric motility and gastric mucosal blood flow. The ulcer results from the tissue necrosis and apoptotic cell death triggered by mucosal ischemia, free radical formation and cessation of nutrient delivery. The gastric mucosa is usually exposed to a wide range of aggressive insults, and has developed efficient mechanisms to repair tissue injury. The apoptotic process of gastric mucosa is triggered by the induction of such proapoptotic gene expression, such as BAX. The Bcl-2 family of proteins plays a pivotal role in the regulation of apoptosis. The maintenance of gastric mucosa integrity depends upon the ratio between cell proliferation and cell death. Stress-inducing factors may affect Bcl-2/BAX ratio and thus the rate of apoptosis through modulation of the expression of both proteins depends upon the experimental model. In addition to the regulation of apoptosis, new vessels have to be generated in order to ensure an adequate supply of oxygen and nutrients to the healing gastric mucosa. This events are regulated by several factors. Among them, such polypeptide growth factors, such as vascular endothelial growth factor (VEGF) regulates essential cell functions involved in tissue healing including cell proliferation and differentiation. The purpose of this study was carried to investigate whether Rhei Rhizoma administration might protect apoptotic cell death and promote angiogenesis in gastric mucosa. Sprague-Dawley rats were randomly divided into 4 groups; normal, saline, cimetidine and Rhei Rhizoma-treated group. The saline, cimetidine and Rhei Rhizoma extracts were orally administrated to each group and gastric ulcer was induced by HCl-EtOH solution. After 1 hour, the stomachs were collected for histological observation and immunohistochemistry. In results, Rhei Rhizoma proves to promote to heal wound in gastric ulcer in conclusion and the significant changes of BAX, Bcl-2 and VEGF quantity in gastric mucosa were observed. These results suggest that Rhei Rhizoma extract may promote incision wound healing and has protective effects on gastric ulcer in rats.

Construction of Chimeric Human Epidermal Growth Factor Containing Short Collagen-Binding Domain Moieties for Use as a Wound Tissue Healing Agent

  • Kim, Dong-Gyun;Kim, Eun-Young;Kim, Yu-Ri;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.119-126
    • /
    • 2015
  • Among the various human growth factors, epidermal growth factor (hEGF, consisting of 53 amino acids) has various effects on cell regeneration, stimulation of proliferation, migration of keratinocytes, formation of granulation tissues, and stimulation of fibroblast motility, which are important for wound healing. Owing to their multiple activities, EGFs are used as pharmaceutical and cosmetic agents. However, their low productivity, limited target specificity, and short half-life inhibit their application as therapeutic agents. To overcome these obstacles, we fused the collagen-binding domain (CBD) of Vibrio mimicus metalloprotease to EGF protein. About 18 or 12 amino acids (aa) (of the 33 total amino acids), which were essential for collagen-binding activity, were combined with the N- and C-termini of EGF. We constructed, expressed, and purified EGF (53 aa)-CBD (18 aa), EGF (53 aa)-CBD (12 aa), CBD (18 aa)-EGF (53 aa), and CBD (12 aa)-EGF (53 aa). These purified recombinant proteins increased the numbers of cells in treated specimens compared with non-treated specimens and control hEGF samples. The collagen-binding activities were also evaluated. Furthermore, CBD-hybridized hEGF induced phosphorylation of the EGF receptor. These results suggested that these fusion proteins could be applicable as small therapeutic agents in wound tissue healing.

Synergistic antitumor activity of a DLL4/VEGF bispecific therapeutic antibody in combination with irinotecan in gastric cancer

  • Kim, Da-Hyun;Lee, Seul;Kang, Hyeok Gu;Park, Hyun-Woo;Lee, Han-Woong;Kim, Dongin;Yoem, Dong-Hoon;Ahn, Jin-Hyung;Ha, Eunsin;You, Weon-Kyoo;Lee, Sang Hoon;Kim, Seok-Jun;Chun, Kyung-Hee
    • BMB Reports
    • /
    • 제53권10호
    • /
    • pp.533-538
    • /
    • 2020
  • Notch signaling has been identified as a critical pathway in gastric cancer (GC) progression and metastasis, and inhibition of Delta-like ligand 4 (DLL4), a Notch ligand, is suggested as a potent therapeutic approach for GC. Expression of both DLL4 and vascular endothelial growth factor receptor 2 (VEGFR2) was similar in the malignant tissues of GC patients. We focused on vascular endothelial growth factor (VEGF), a known angiogenesis regulator and activator of DLL4. Here, we used ABL001, a DLL4/VEGF bispecific therapeutic antibody, and investigated its therapeutic effect in GC. Treatment with human DLL4 therapeutic antibody (anti-hDLL4) or ABL001 slightly reduced GC cell growth in monolayer culture; however, they significantly inhibited cell growth in 3D-culture, suggesting a reduction in the cancer stem cell population. Treatment with anti-hDLL4 or ABL001 also decreased GC cell migration and invasion. Moreover, the combined treatment of irinotecan with anti-hDLL4 or ABL001 showed synergistic antitumor activity. Both combination treatments further reduced cell growth in 3D-culture as well as cell invasion. Interestingly, the combination treatment of ABL001 with irinotecan synergistically reduced the GC burden in both xenograft and orthotopic mouse models. Collectively, DLL4 inhibition significantly decreased cell motility and stem-like phenotype and the combination treatment of DLL4/VEGF bispecific therapeutic antibody with irinotecan synergistically reduced the GC burden in mouse models. Our data suggest that ABL001 potentially represents a potent agent in GC therapy. Further biochemical and pre-clinical studies are needed for its application in the clinic.

Anti-metastatic Potential of Ethanol Extract of Saussurea involucrata against Hepatic Cancer in vitro

  • Byambaragchaa, Munkhzaya;de la Cruz, Joseph;Yang, Seung Hak;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5397-5402
    • /
    • 2013
  • The rates of morbidity and mortality of hepatocellular carcinoma (HCC) have not lessened because of difficulty in treating tumor metastasis. Mongolian Saussurea involucrata (SIE) possesses various anticancer activities, including apoptosis and cell cycle arrest. However, detailed effects and molecular mechanisms of SIE on metastasis are unclear. Thus, the present study was undertaken to investigate antimetastatic effects on HCC cells as well as possible mechanisms. Effects of SIE on the growth, adhesion, migration, aggregation and invasion of the SK-Hep1 human HCC cell line were investigated. SIE inhibited cell growth of metastatic cells in dose- and time-dependent manners. Incubation of SK-Hep1 cells with $200-400{\mu}g/mL$ of SIE significantly inhibited cell adhesion to gelatin-coated substrate. In the migration (wound healing) and aggregation assays, SIE treated cells showed lower levels than untreated cells. Invasion assays revealed that SIE treatment inhibited cell invasion capacity of HCC cells substantially. Quantitative real time PCR showed inhibitory effects of SIE on MMP-2/-9 and MT1-MMP mRNA levels, and stimulatory effects on TIMP-1, an inhibitor of MMPs. The present study not only demonstrated that invasion and motility of cancer cells were inhibited by SIE, but also indicated that such effects were likely associated with the decrease in MMP-2/-9 expression of SK-Hep1 cells. From these results, it was suggested that SIE could be used as potential anti-tumor agent.