• Title/Summary/Keyword: cell fusion

Search Result 868, Processing Time 0.028 seconds

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Tat-CIAPIN1 protein prevents against cytokine-induced cytotoxicity in pancreatic RINm5F β-cells

  • Yeo, Hyeon Ji;Shin, Min Jea;Kim, Dae Won;Kwon, Hyeok Yil;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.458-463
    • /
    • 2021
  • Cytokines activate inflammatory signals and are major mediators in progressive β-cell damage, which leads to type 1 diabetes mellitus. We recently showed that the cell-permeable Tat-CIAPIN1 fusion protein inhibits neuronal cell death induced by oxidative stress. However, how the Tat-CIAPIN1 protein affects cytokine-induced β-cell damage has not been investigated yet. Thus, we assessed whether the Tat-CIAPIN1 protein can protect RINm5F β-cells against cytokine-induced cytotoxicity. In cytokine-exposed RINm5F β-cells, the transduced Tat-CIAPIN1 protein elevated cell survivals and reduced reactive oxygen species (ROS) and DNA fragmentation levels. The Tat-CIAPIN1 protein reduced mitogen-activated protein kinases (MAPKs) and NF-κB activation levels and elevated Bcl-2 protein, whereas Bax and cleaved Caspase-3 proteins were decreased by this fusion protein. Thus, the protection of RINm5F β-cells by the Tat-CIAPIN1 protein against cytokine-induced cytotoxicity can suggest that the Tat-CIAPIN1 protein might be used as a therapeutic inhibitor against RINm5F β-cell damage.

Differential Influences in Sizes and Cell Cycle Stages of Donor Blastomeres on the Development of Cloned Rabbit Embryos

  • Ju, Jyh-Cherng;Yang, Jyh-Shyu;Liu, Chien-Tsung;Chen, Chien-Hong;Tseng, Jung-Kai;Chou, Po-Chien;Cheng, San-Pao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Experiments were conducted to evaluate the effect of blastomere diameters and cell cycle stages on the subsequent development of nuclear transplant rabbit embryos (NT-embryos) using nuclei derived from the 16- or 32-cell stage embryos. All blastomeres and NT-embryos were cultured individually in modified Ham's F-10 medium supplemented with 10% rabbit serum (RS) at $38^{\circ}C$ and 5% $CO_2$ in air. The diameter of blastomeres from 16-cell stage embryos was found twice of those from 32-cell stage (51 vs 27 ${\mu}m$). Significant differences were observed in cleavage rates ($\geq$3 divisions) in the isolated single blastomeres (54 vs 48 for 16-cell; 28 vs 14 for 32-cell, p<0.05), but the fusion rates of oocytes with transferred nuclei were similar between small and large single blastomeres derived from either 16-cell or 32-cell stage embryos. When 16-cell stage blastomeres were used as nuclear donors, cleavage rates ($\geq$3 divisions) of the NT-embryos were greater in the small nuclear donors than in the large donors (73 vs 55%, p<0.05). On the contrary, significantly higher cleavage (43 vs 6%, p<0.05) and developmental rates (14 vs 0%, p<0.05) were observed in the large blastomere nuclear donor group of the 32-cell stage embryos. When the cell cycle stages were controlled by a microtubule polymerization inhibitor (Demicolcine, DEM) or the combined treatment of DEM and Aphidicolin (APH), a DNA polymerase inhibitor, fusion rates were 88-96% for the 16-cell donor group (without DEM treatment), which were greater than the 32-cell donor group (54-58%). Cleavage rates were also greater in the transplants derived from G1 nuclear donor group (93-95%) than those from the DEM and APH combined treatment (73%) for the 16-cell donor group (p<0.05). No significant difference was detected in the morula/blastocyst rates in either donor cell stage (p>0.05). In conclusion, it appeared that no difference in the developmental competence between large and small isolated blastomeres was observed. When smaller 16-cell stage blastomeres were used as nuclear donor, the cleavage rate or development of NT-embryos was improved and was compromised when 32-cell stage blastomeres were used. Therefore, control nuclear stage of the donor cell at $G_1$ phase in preactivated nuclear recipients seemed to be beneficial for the cleavage rate of the reconstructed embryo in the 16-cell transplant, but not for subsequent morula or blastocyst development.

Research on the Indices for Demonstrating Cell Conditions

  • Kim, Ik-Hyun;Pan, Sung-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.324-328
    • /
    • 2012
  • In the past a few decades, various kinds of cells have been examined in laboratories all over the world, and their interesting results have been expressed through various methods in journal publications. For a representative example, the increment or reduction of cell numbers during a bio-related experimental process has been demonstrated using the hazard ratio in survival analysis or in the form of a graph. In addition, the condition of cells such as their normality or abnormality would be indicated by the images of the cell nuclei or membranes treated with proper fluorescent labeling. However, the above methods seem to not be quantitative but rather qualitative assessments, which might be difficult to provide people with the eidetic understanding through parameters or numerical data. With adequate suggestions on any indices enabling the explanation for cell conditions, some analyses may be underestimated due to the lack of objectiveness caused by merely linguistic evaluation for the cell conditions, not numerally scientific interpretation. Therefore, in this study, we would suggest some indices enabling quantitative analysis on the cellular conditions.

The art of reporter proteins in science: past, present and future applications

  • Ghim, Cheol-Min;Lee, Sung-Kuk;Takayama, Shuichi;Mitchell, Robert J.
    • BMB Reports
    • /
    • v.43 no.7
    • /
    • pp.451-460
    • /
    • 2010
  • Starting with the first publication of lacZ gene fusion in 1980, reporter genes have just entered their fourth decade. Initial studies relied on the simple fusion of a promoter or gene with a particular reporter gene of interest. Such constructs were then used to determine the promoter activity under specific conditions or within a given cell or organ. Although this protocol was, and still is, very effective, current research shows a paradigm shift has occurred in the use of reporter systems. With the advent of innovative cloning and synthetic biology techniques and microfluidic/nanodroplet systems, reporter genes and their proteins are now finding themselves used in increasingly intricate and novel applications. For example, researchers have used fluorescent proteins to study biofilm formation and discovered that microchannels develop within the biofilm. Furthermore, there has recently been a "fusion" of art and science; through the construction of genetic circuits and regulatory systems, researchers are using bacteria to "paint" pictures based upon external stimuli. As such, this review will discuss the past and current trends in reporter gene applications as well as some exciting potential applications and models that are being developed based upon these remarkable proteins.

Inhibition of Myoblast Differentiation by Polyamine Depletion with Methylglyoxal Bis(guanylhydrazone)

  • Cho, Hwa-Jeong;Kim, Byeong-Gee;Kim, Han-Do;Kang, Ho-Sung;Kim, Chong-Rak
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.191-196
    • /
    • 1995
  • The role of polyamines in skeletal myoblast differentiation was investigated using the polyamine metabolic inhibitor methylglyoxal bis(guanylhydrazone)(MGBG). Concentrations of intracellular free spermidine and spermine increased 2 to 2.5-fold at the onset of myoblast fusion. The systhesis of actin, and creatine kinase activity both dramatically increased during myotube formation. However, MGBG at a concentration of 0.5 mM not only abolished the increase of intracellular free polyamines, but also reduced cell fusion to almost half the level of untreated cells, without noticeable morphological alteration. The production of actin, and creatine kinase activity were almost completely abolished by MGBG. The inhibition of myoblast fusion by MGBG was partially recovered with 0.1 mM of spermidine or spermine added externally. Results indicate that polyamines are necessary for normal myoblast differentiation. Since the first indication of myoblast differentiation is alignment of muscle cells and membrane fusion of adjacent cells, and since polyamine depletion completely inhibited the synthesis of actin, which might be associted with membranes, polyamine might be involved in myoblast differentiation through membrane reorganization events.

  • PDF

The protein truncation caused by fusion of PEP-1 peptide and protective roles of transduced PEP-1-MsrA in skin cells

  • Lee, Tae-Hyung;Choi, Seung-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.256-261
    • /
    • 2011
  • PEP-1 peptide has been used for transduction of native protein into mammalian cells. This work describes the findings that the fusion of PEP-1 to target proteins led to protein truncation likely in a non-protein-specific manner. Approximately 75% of PEP-1-MsrA fusion protein was truncated in the N-terminal region of MsrA between Lys-27 and Val-28 during expression in Escherichia coli and purification. This large protein truncation was also observed in another PEP-1 fused protein, PEP-1-MsrB2, in the N-terminal region of MsrB2. The full-length PEP-1-MsrA protein was rapidly transduced into keratinocyte cells within 15 min. The transduced PEP-1-MsrA was functionally active and could protect skin cells against oxidative stress- and ultraviolet radiation-induced cell death. Collectively, our data demonstrated the protective roles of MsrA in skin cells and, moreover, may raise a concern of protein truncation caused by fusion of PEP-1 about the general use of this peptide for protein transduction.

Production of Genistein from Naringenin Using Escherichia coli Containing Isoflavone Synthase-Cytochrome P450 Reductase Fusion Protein

  • Kim, Dae-Hwan;Kim, Bong-Gyu;Jung, Na-Ri;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1612-1616
    • /
    • 2009
  • Isoflavonoids are a class of phytoestrogens. Isoflavonone synthase (IFS) is responsible for the conversion of naringenin to genistein. IFS is a cytochrome P450 (CYP), and requires cytochrome P450 reductase (CPR) for its activity. Additionally, the majority of cytochrome P450s harbor a membrane binding domain, making them difficult to express in Escherichia coli. In order to resolve these issues, we constructed an inframe fusion of the IFS from red clover (RCIFS) and CPR from rice (RCPR) after removing the membrane binding domain from RCIFS and RCPR. The resultant fusion gene, RCIFS-RCPR, was expressed in E. coli. The conversion of naringenin into genistein was confirmed using this E. coli transformant. Following the optimization of the medium and cell density for biotransformation, $60\;{\mu}M$ of genistein could be generated from $80\;{\mu}M$ of naringenin. This fusion protein approach may be applicable to the expression of other P450s in E. coli.

Microbial Transformation of Aniline to Acetaminophen

  • Lee, Sang-Sup;Jin, Hyung-Jong;Son, Mi-Won
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.30-34
    • /
    • 1992
  • In order to obtain acetaminophen, a popular analgesic-antipyretic, through microbial p-hydroxylation and N-acetylation of aniline, various fungi and bacteria were secreened. Among them, Streptomyces species were chosen for strain improvement by the use of interspecific protoplast fusion technique. Two interspecific fused strains were developed between S. rimosus (N-cetylation function) and S. aureofaciens (p-hydroxylation function) and also between S. lividans and S. globisporus. For efficient protoplast fusion and cell wall regeneration, various conditions were examined. In a typical experiment of mixed S rimosus ($pro^- \;his^-$) and S. aureofaciens ($ilv^-$) protoplasts with 40% (w/v) polythylene glycol 3350 (PEG) for 3 min gave $8.3\times10^{-7}$ of fusion frequency. Treatment of mixed S. lividans (pant-) and S. globisporus (leu-) protoplasts with 50% (w/v) PEG for 3 min at $30^\circ{C}$ gave $1.2\times10^{-6}$ of frequency. Among the fused strains, up to 40-50% increase in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation of acetanilide, plasmid curing was attempted. We found that cells treated with acriflavine (at the frequency of 100%) and cells regenerated from protoplsts of S. auroefaciens (2% frequency) lost their p-hydroxylation function.

  • PDF

The Inhibitory Effect of Dopamine on Myoblast Fusion in vitro (Dopamine의 배양근원세포 융합억제 작용)

  • Kang, Man-Sik;Song, Woo-Keun;Song, Yung-Kook
    • The Korean Journal of Zoology
    • /
    • v.29 no.4
    • /
    • pp.235-244
    • /
    • 1986
  • In order to elucidate the effect of neurotransmitter on the differention of myoblasts in vitro, dopamine was administered to the myoblasts at varying stages of myogenesis, and the fusion index, the rate of creatine kinase (CK) synthesis, and the sensitivity to dopamine were determined. When dopamine $(3 \\times 10^{-5} M)$ was administered at 34 hr after myoblast seeding, a significant decrease in the fusion index as well as CK synthesis was observed, indicating a good correlation exists between these two parameters. In other experiment, dopamine was administered at varying stages of myogenesis and the inhibitory effect of dopamine as scored by fusion index at 96 hr was found to be cyclic in nature. This finding raised a possibility that arrangement of dopamine receptors occurs according to the cell cycle stages in myogenesis.

  • PDF