• Title/Summary/Keyword: cell differentiation heterochromatin

Search Result 3, Processing Time 0.019 seconds

AN ELECTRON MICROSCOPIC, RADIOAUTOGRAPHIC STUDY OF ERYTHROPOIESIS IN VITRO

  • MYUNG No Chul
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.17 no.1
    • /
    • pp.27-49
    • /
    • 1987
  • Using ³H-proline as a radioactive tracer, the relationship between the ultrastructural differentiation and the site of protein synthesis has been investigated in developing red blood corpuscles. The general ultra-structure of erythropoietic cells in differentiation after 60 minutes of in vitro labeling has confirmed the results from previous investigations by Bessis, M., Thiery, J. and others. In dividing nuclei more than two-thirds of the labeling were present at the interface between heterochromatin and euchromatin. In less differentiated cells most of the grains in interphase cells was localized over the nucleus. As the cells continued to develope beyond a stage where cytoplasmic density was clearly increased over other cell lines in bone marrow, the majority of grains localized over the cytoplasmic area was decreased in more mature cells, as judged by the density of cytoplasm, and the structural changes in mitochondria, Golgi complex and polysomal configurations. These results show; 1) that the cytoplasm of erythroblast series does not change under in vitro conditions employed in the study; 2) that protein synthesis in the nucleus occurs largely at the interface between euchromatin and heterochromatin in active nuclei; and 3) that cytoplasmic synthesis of proteins continues to take place well into the normoblast stage solong as the physically visible polysomes are present in maturing red blood corpuscles.

  • PDF

Cell Structures of Spermatogenesis of Rainbow Trout, Oncorhynchus mykiss in Reproductive Cycles (번식주기(繁殖週期)에 따른 무지개 송어(松魚) 정자형성시(精子形成時) 세포구조(細胞構造)의 변화(變化))

  • Yoon, Jong-Man;Kim, Gye-Woong;Park, Chung-Kil;Roh, Soon-Chang
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.55-66
    • /
    • 1994
  • This study was carried out to investigate the histological changes of sperm cells in testis, obtained from 100 of 3-year-old male rainbow trout (Oncorhynchus mykiss) collected and analysed from March in 1992 to February in 1993. Especially, the ultrastructural changes of spermatogonia, primary and secondary spermatocytes, spermatids, and spermatozoa were examined to describe the reproductive cycles of this species. The results obtained in this study were as follows: The ultrastructures of the gonadotrophs largely parallel the cyclical changes in the testes. Each nest of cells belongs to one spermatogenetic stage, although nests at different stages can be found within the one lobule. At first keterochromatin is dispersed and then is condensed. In mature gamete, the nucleus is dense and homogeneous. The nuclear membrane appeared at the beginning of differentiation. In spermatogonia, Sertoli cells are located at the periphery of their cytoplasm. In the primary spermatocytes, the small mitochondria are abundant over the outer cytoplasm. During cell differentiation, the cytoplasm decreases and the nucleus increases. In spermatids, the protein masses moved towards the posterior part of the nucleus. In late spermatids, the two large mitochondria are located over the cytoplasm. In spermatozoa, two spheroidal mitochondria (about 145nm long) are situated in parallel between the nucleus and the axoneme. Spermatozoa mitochondria are assembled into an organized sheath surrounding the outer dense fibres and axoneme of the flagellar midpiece. The two centrioles are quite separate and the central pair and sheath complex of the flagellum is inserted into the base of the distal centriole.

  • PDF

Immunocytochemical Localization of Metallothionein in Gastric Adenocarcinoma (위암 조직내 Metallothionein의 면역 세포화학적 연구)

  • Yang, Seung-Ha;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • Metallothionein (MT) is a family of ubiquitous, low molecular weight ($6,000{\sim}7,000D$), cysteine-rich ($30{\sim}35%$) inducible protein with a high affinity to metal ions and has no aromatic amino acids and histidine. Some of the known functions of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Also, this protein has been reported to involve in tumor pathophysiology and therapy resistance. MT expression may affect a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. Many reports on the physiological and biochemical properties of MT have been published, but ultrastructural reports on the localization of MT in human gastric cancer tissues are extremely rare. The present study was undertaken to examine the ultrastructural features and the localization of MT within the gastric adenocarcinoma. Ultrastructures of gastric cancer cells were characterized by the high nuclear cytoplasmic ratio, the interdigitation between cells, the irregular nucleus containing much heterochromatin and the wide distribution of free ribosomes in the cytoplasm. Immunohistochemical reaction for MT was prominent in the gastric adenocarcinoma. And the immunogold labellings were more prominent within the nucleus than the cytoplasm. Particularly, immunogold particles were numerously seen at nulcleolus or nucleolar associated heterochromatin. These results suggest that MT expression by gastric cancer cells is associated with cell proliferative activity and is possibly synthesized in the cytoplasm, and then the protein is transported into the nucleus to participate in any transcriptional steps.