• Title/Summary/Keyword: cell design

Search Result 3,240, Processing Time 0.034 seconds

Employing Laccase-Producing Aspergillus sydowii NYKA 510 as a Cathodic Biocatalyst in Self-Sufficient Lighting Microbial Fuel Cell

  • Abdallah, Yomna K.;Estevez, Alberto T.;Tantawy, Diaa El Deen M.;Ibraheem, Ahmad M.;Khalil, Neveen M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1861-1872
    • /
    • 2019
  • In the present work, we isolated and identified Aspergillus sydowii NYKA 510 as the most potent laccase producer. Its medium constituents were optimized to produce the highest possible amount of laccase, which was after 7 days at 31℃ and pH 5.2. Banana peel and peptone excelled in inducing laccase production at concentrations of 15.1 and 2.60 g/l, respectively. Addition of copper sulfate elevated enzyme yield to 145%. The fungus was employed in a microbial fuel cell (MFC). The best performance was obtained at 2000 Ω achieving 0.76 V, 380 mAm-2, 160 mWm-2, and 0.4 W. A project to design a self-sufficient lighting unit was implemented by employing a system of 2 sets of 4 MFCs each, connected in series, for electricity generation. A scanning electron microscopy image of A. sydowii NYKA 510 was utilized in algorithmic form generation equations for the design. The mixed patterning and patterned customized mass approach were developed by the authors and chosen for application in the design.

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

A Study on Design and Optimization of 500W PEM Fuel Cell System (500W PEM형 연료전지시스템 구축 및 운전 최적화에 관한 연구)

  • Park, Se-Joon;Choi, Hong-Jun;Kim, Gwang-Yeol;Cha, In-Su;Lim, Jung-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.191-193
    • /
    • 2008
  • A fuel cell power system among various alternative power sources has many advantages such as low-polluted, high-efficient, and heat-recyclable, thus it is now able to be up to hundreds MWh-scaled through improving feasibility and longevity of it. During the last few years of the twentieth century, much changed to stimulate new and expanding interest in fuel cell technology. This paper presents optimal design and operational features of stand-alone 500W PEMFC(Proton Exchange Membrane Fuel Cell) system which can be a substitute instead fossil fuel. The stack of PEMFC is composed of 35 laminated graphite, and a unit cell of the stack has electrical characteristics as below; 14W, 0.9V, 15A. The other components of BOP(Balance of Plant) are composed of hydrogen and nitrogen tanks, regulators, 3way 5solenoid valves, mass flow meters, etc.

  • PDF

Design Performance Analysis of Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Steam Injection (스팀분사를 고려한 SOFC/GT 하이브리드 시스템의 설계 성능 비교 분석)

  • Park, Sung-Ku;Kim, Tong-Seop
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3224-3229
    • /
    • 2007
  • This study aims to analyse the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. The steam is generated by recovering heat from the exhaust gas. Two system configurations, with difference being the operating pressure of the SOFC, are examined and effects of steam injection on performances of the two systems are compared. Two representative gas turbine pressure ratios are simulated and a wide range of both the fuel cell temperature and the turbine inlet temperature is examined. Without steam injection, the pressurized system generally exhibits better system efficiency than the ambient pressure system. Steam injection increases system power capacity for all design cases. However, its effect on system efficiency varies much depending on design conditions. The pressurized system hardly takes advantage of the steam injection in terms of the system efficiency. On the other hand, steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. A higher pressure ratio provides a better chance of efficiency increase due to steam injection.

  • PDF

Engine Room Layout Design Optimization of Fuel Cell Vehicle Using CFD Technique (CFD를 이용한 연료전지 차량 레이아웃 최적화)

  • Kim, Jung-Ill;Jeon, Wan-Ho;Cho, Jang-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This paper deals with engine room layout design optimization of fuel cell electric vehicle (FCEV), which has been proposed as a potential alternative to fossil fuel depletion. Investing the great R&D efforts, the global vehicle manufacturers, especially Honda motor corporate, have shown not prototype vehicle but commercial vehicle using fuel cell in the market recently. In this paper, we analyze cooling performance and flow characteristic in the engine room of newly FCEV, in addition we suggest the optimization process for engine room layout design optimization. The two radiators in the vehicle for fuel cell stack and electronic components cooling have been analyzed and their performance are obtained in terms of cooling performance ratio (CPR). The value of CPR should always be less than one and based on criteria, we have achieved the optimum cooling performance of radiators for stack and electronic components. Aerodynamic performance is evaluated in terms of drag coefficient, improved through underbody modification using air devices.

Microstructure Characterization of TiO2 Photoelectrodes for dyesensitized Solar Cell using Statistical Design of Experiments

  • Lee, Sung-Joon;Cho, Il-Hwan;Kim, Hyun-Wook;Hong, Sang-Jeen;Lee, Hun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.177-181
    • /
    • 2009
  • Employing statistical design of experiments, we have performed studies on the characterization of electrodes using $TiO_2$ and process variables in the fabrication process of nanocrystalline dye sensitized solar cell. Systematic experiment to identify the effects of process variables on cell's efficiency has based on broad-band absorption of light by tailor made organometallic dye molecules dispersed on a high surface of $TiO_2$. Employing statistical design of experiment on $TiO_2$ photoelectrode forming process, structural characterization of electrodes and process variable have been investigated. Through the statistical analysis we have found that the particle size of $TiO_2$ and the amount of PEG/PEO are significantly affecting on the cell efficiency. In addition, a significant amount of interaction exists between the particle size and the amount of PEG/PEO.

An Optimal Design Guide for Campus wireless LAN by Evaluating Performance Measurements in IEEE 802.11n-based Networks (IEEE 802.11n 기반에서 성능측정을 통한 최적의 캠퍼스 무선 랜 설계)

  • Kim, Bang Ryong;Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.9-23
    • /
    • 2013
  • In recent days, there are many researches of wireless LAN services as the communication environment of wireless LAN are so improved that a lot of services are available in wireless environments. The frequency of the wireless LAN is a general resource that can be used to everyone without any permission. Many technologies using this ISM (Industry Science Medical) frequency band are developed fast and widely. But, as many devices use the same frequency band at th same time, the service quality is degraded and the speed of the service rate id degraded by the result of the interference. For overcome this problem, we must provide the new technology of the mobile devices and a new cell design scheme for obtaining maximum throughput that considering the wireless environments effectively. In this paper, we explain the main technology at the IEEE 802.11n environments and proposes the optimal cell design and reference model for gaining maximum performance to many mobile devices at the same time by investigating real environment testing results.

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO4/Graphite Electrodes in High Capacity Lithium-ion Batteries

  • Yu, Seungho;Kim, Soo;Kim, Tae Young;Nam, Jin Hyun;Cho, Won Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.79-88
    • /
    • 2013
  • $LiFePO_4$ is a promising active material (AM) suitable for use in high performance lithium-ion batteries used in automotive applications that require high current capabilities and a high degree of safety and reliability. In this study, an optimization of the electrode design parameters was performed to produce high capacity lithium-ion batteries based on $LiFePO_4$/graphite electrodes. The electrode thickness and porosity (AM density) are the two most important design parameters influencing the cell capacity. We quantified the effects of cathode thickness and porosity ($LiFePO_4$ electrode) on cell performance using a detailed one-dimensional electrochemical model. In addition, the effects of those parameters were experimentally studied through various coin cell tests. Based on the numerical and experimental results, the optimal ranges for the electrode thickness and porosity were determined to maximize the cell capacity of the $LiFePO_4$/graphite lithium-ion batteries.

Design of the Supporting Structure of a Wire Saw for the Solar Cell Wafer (태양전지 웨이퍼용 Wire Saw안정화를 위한 지지구조 개선)

  • Yi, Il Hwan;Ro, Seung Hoon;Kim, Dong Wook;Park, In Kyu;Kil, Sa Geun;Kim, Young Jo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • In recent years, the solar cell market has steadily grown with the demand for new energies. And wire sawing is one of the most critical processes in manufacturing solar cell wafer which is supposed to affect the breakage of wafers most during the process and afterwards. Generally, the defects of the wafers are generated from the structural vibrations of the machine. In the sawing process, the vibrations cause unnecessary normal stress on the cut surface of wafers, and eventually create the surface damage or leave the residual stress. In this study, the dynamic properties of a wire saw have been analyzed through the frequency response test and the computer simulation. And the effects of the design alterations have been investigated to stabilize the machine structure and further to reduce the vibrations. The result shows that relatively simple design alterations of supporting structure without any change of major parts of the machine can suppress the vibrations of the machine effectively.

Simulation Study of the Phosphoric Acid Fuel Cell Stack (인산형 연료전지 스택의 전산모사)

  • Choi, Sungwoo;Lee, Kab soo;Kim, Hwayong
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.243-250
    • /
    • 2001
  • The fuel cell has been continuously studied as environment-compatible alternative energy technology. Lately the basic techniques about stacking and widening are considered to be important for practical use. Although phosphoric acid fuel cell (PAFC) is the most progressed one in the fuel cell technologies, few studies about temperature profile of the stack which can be the basic data for the fuel cell design have been reported yet. In this study, the temperature profile of PAFC stack was simulated. The temperature profiles of stack were obtained at various operating conditions, and when stack is operated the proper position to measure the temperature could be predicted. Also we can propose more effective cooling design. The standard deviation of the temperature profile of the proposed design was is about 50% smaller.

  • PDF