• Title/Summary/Keyword: cell degradation

Search Result 1,513, Processing Time 0.036 seconds

Anatomical Difference Between Two Rice Cultivars Selected to Oxyfluorfen (Oxyfluorfen에 내성(耐性) 및 감수성(感受性) 수도품종(水稻品種)에 대한 해부학적(解剖學的) 차이(差異))

  • Cheon, S.U.;Guh, J.O.;Lee, Y.M.;Lee, D.J.
    • Korean Journal of Weed Science
    • /
    • v.8 no.2
    • /
    • pp.187-198
    • /
    • 1988
  • The second leaves from 30 days old seedlings of two rice cultivars which were selected as tolerant (cv. Chokoto) and susceptible (cv. Weld pally) cultivar were soaked in the concentration of $10^{-6}$, $10^{-5}$, $10^{-4}$ and $10^{-3}M$ of oxyfluorfen for 10, 15 and 22hrs and anatomical characteristics were abserved. Dipping to the solutions were carried out either directly to the attached leaves or to the seperated leaves. Development of any symptoms in epidermis, bundle sheath, mesophyll cells and bulliform cells were microscopically inspected. Both cultivars showed reductionin leaf thickness, but the susceptible ones was more sensitive than the tolerant. The degradation and disappearance of epidermal cell layer, breakage of bundle sheath cells, shrinkage of mesophyll cells and disappearance of bulliform cells were general response as affected by oxyfluorfen treatment. The susceptible cultivars showed such responses at the concentration of $10^{-5}M$ for 10 hrs while tolerant ones $10^{-3}M$, for 10 hrs. Those treatments were more effective in seperated leaves than in attached ones. The epicuticular wax layer of leaves treated as above for 20 hrs was inspected by SEM. Weld pally, the susceptible cultivar (Weld pally) showed rapid cleavage of wax layer under $10^{-5}M$ concentration while the tolerant (Chokoto) showed only minor damage on wax layer at the concentration of $10^{-3}M$.

  • PDF

Anti-oxidative and Anti-cancer Activities of Methanol Extract of Machaerium cuspidatum (Machaerium cuspidatum 메탄올 추출물의 항산화 및 항암활성에 관한 연구)

  • Jin, Soojung;Oh, You Na;Park, Hyun-jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.432-441
    • /
    • 2016
  • Machaerium cuspidatum, a canopy liana, is a species of genus legume in the Fabaceae family and contributes to the total species richness in the tropical rain forests. In the present study, we investigated the antioxidative and anti-cancer effects of M. cuspidatum and its mode of action. The methanol extract of M. cuspidatum (MEMC) exhibited anti-oxidative activity with an $IC_{50}$ value of $1.66{\mu}g/ml$, and this was attributable to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. MEMC also exhibited a cytotoxic effect and induced morphological changes in a dose-dependent manner in several cancer cell lines including human lung adenocarcinoma A549 cells, human hepatocellular carcinoma HepG2 cells, and human colon carcinoma HT29 cells. Moreover, MEMC treatment induced the accumulation of subG1 population, which is indicative of apoptosis in A549 and HepG2 cells. MEMC-induced apoptosis was confirmed by the increase in Annexin V-positive apoptotic cells and apoptotic bodies using Annexin-V staining and DAPI staining, respectively. Further investigation showed that MEMC-induced apoptosis was associated with the increase in p53 and Bax expression, and the decrease in Bcl-2 expression. In addition, MEMC treatment led to proteolytic activation of caspase-3, 8, and 9 and degradation of poly-ADP ribose polymerase (PARP). Taken together, these results suggest that MEMC may exert a beneficial anti-cancer effect by inducing apoptosis via both the extrinsic and intrinsic pathways in A549 and HepG2 cells.

Ultrastructural analysis and quantification of autophagic vacuoles in wild-type and atg5 knockout mouse embryonic fibroblast cells (정상 및 atg5 유전자 제거 섬유아세포에서 자가포식체의 미세구조 및 이들의 정량적 분석)

  • Choi, Suin;Jeon, Pureum;Huh, Yang Hoon;Lee, Jin-A
    • Analytical Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.208-218
    • /
    • 2018
  • Autophagy is a cellular process whereby cytosolic materials or organelles are taken up in a double-membrane vesicle structure known as an autophagosome and transported into a lysosome for degradation. Although autophagy has been studied at the genetic, cellular, or biochemical level, systematic ultrastructural quantitative analysis of autophagosomes during the autophagy process by using transmission electron microscopy (TEM) has not yet been reported. In this study, we performed ultrastructural analysis of autophagosomes in wild-type (WT) mouse embryonic fibroblasts (MEFs) and autophagy essential gene (atg5) knockout (KO) MEFs. First, we performed ultrastructural analysis of autophagosomes in WT MEFs compared to atg5 KO MEFs in basal autophagy or starvation-induced autophagy. Although we observed phagopore, early, late autophagosomes, or autolysosomes in WT MEFs, atg5 KO MEFs had immature autophagosomes that showed incomplete closure. Upon starvation, late autophagosomes accumulated in WT MEFs while the number of immature autophagosomes significantly increased in atg5 KO MEF indicating that atg5 plays an important role in the maturation of autophagosomes. Next, we examined autophagosomes in the cell model expressing polyQ-expanded N-terminal fragment of huntingtin. Our TEM analysis indicates that the number of late autophagosomes was significantly increased in the cells expressing the mutant huntingtin, indicating that improving the fusion of autophagosome with lysosome may be effective to enhance autophagy for the treatment of Huntington's disease. Taken together, the results of our study indicate that ultrastructural and quantitative analysis of autophagosomes using TEM can be applied to various human cellular disease models, and that they will provide an important insight for cellular pathogenesis of human diseases associated with autophagy.

Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis (Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성)

  • Nam, Gyeong-Hwa;Jang, Myoung-Uoon;Kim, Min-Jeong;Lee, Jung-Min;Lee, Min-Jae;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$-1,4-linkages of xylan backbones to produce the mixtures of xylooligosaccharides including xylobiose and xylotriose. Among them, glucuronoxylanase GH30 can exclusively hydrolyze the internal ${\beta}$-1,4-linkages of xylans decorated with methylglucuronic acid branches. In the present study, two xylanolytic enzyme (PaXN_10 and PaGuXN_30) genes were cloned from Paenibacillus amylolyticus KCTC 3005, and expressed in Escherichia coli, respectively. PaXN_10 (38.7 kDa) belongs to the endo-${\beta}$-xylanases GH10 family, while PaGuXN_30 (58.5 kDa) is a member of glucuronoxylanase GH30. They share the same optimal reaction conditions at $50^{\circ}C$ and pH 7.0. Enzymatic characterization proposed that P. amylolyticus can utilize the hardwood glucuronoarabinoxylans via the cooperative actions of xylanases GH10 and GH30. The extracellular PaGuXN_30 is secreted into the medium and hydrolyzes glucuronoarabinoxylans to release a series of aldouronic acid mixtures with a methylglucuronic acid branch. The resultant products being transported into the microbial cell are successively degraded into the smaller xylooligosaccharides by the intracellular PaXN_10, which will be utilized for the cellular metabolism.

Expression of Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 in Radiation Exposed Small Intestinal Mucosa of the Rat (방사선조사를 받은 흰쥐 소장 점막의 손상과 재생과정 중 금속단백효소 및 억제자의 발현)

  • Kwag, Hyon-Joo;Lee, Kyoung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.66-74
    • /
    • 2003
  • Purpose : The matrix metalloprotelnases (MMPs) are a family of enzymes whose main function is the degradation of the extracellular matrix. Several studies have revealed that MMPs and TIMPS are related to the wound heating process and in photoaging caused by ultraviolet Irradiation. However, the expressions of MMP and TIMP after irradiation have not, to the best of our knowledge, been studied. This study investigates the expressions of MMP-2 and TIMP-2 in rat Intestinal mucosa following irradiation. Materials and Methods : The entire abdomen of Sprague-Dawley rats was irradiated using a single dose method. The rats were sacrificed on day 1, 2, 3, 5, 7 and 14 following irradiation. Histopathological observations were made using hematoxilin & eosin staining. The expressions of MMP-2 and TIMP-2 were examined using immunohistochemistry, Irnrnunoblotting and ELISA. Results : Radiation induced damage associated with atrophic villi, and infiltration of inflammatory cell was observed from the first postirradiation day, and severe tissue damage was observed on the second and the third postirradiation days. An increase in mitosis and the number of regenerating crypts, as evidence of regeneration, were most noticeable on the fifth postirradiation day. From the immunohistochemlstry, the MMP-2 expression was observed from the first postirradiation day, but was most conspicuous on the third and the fifth postirradiation days. The TIMP-2 expression was most conspicuous on the fifth postirradiation day. From the irnrnunoblotting, the MMP-2 expression was strongly positive on the third postirradlatlon day, and that of TIMP-2 showed a strong positive response on the fifth postirradiation day. In ELISA tests, the expressions of MMP-2 and TIMP-2 were increased in the postirradiation groups compared to those of the normal controls, and showed a maximum increase on the fifth postirradiatlon day. These results were statistically significant. Conclusion : The expressions of MMP-2 and TIMP-2 were increased in the intestinal mucosa of the rats following irradiation, and these results correlated with the histopathological findings, such as tissue damage and regeneration. Therefore, this study suggests that MMP-2 and TIMP-2 play roles in the mechanisms of radiation-induced damage and regeneration of intestinal mucosa of rats.

Anti-Inflammmatiry Effects of Nerium indicum Ethanol Extracts through Suppression of NF-kappaB Activation (NF-κB 활성 저해를 통한 협죽도 에탄올 추출물의 항염증 효능)

  • Kim, Tae-Hwan;Ko, Seog-Soon;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Kim, Byung-Woo;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1221-1229
    • /
    • 2010
  • Nerium indicum, an India-Pakistan-originated shrub belonging to the oleander family, is reported to possess many pharmacological activities including cardiac muscle stimulation, and anti-diabetes, anti-angiogenesis, anti-cancer and neuro-protective activities. However, the anti-inflammatory properties of N. indicum were unclear. In this study, we investigated the effects of ethanol extract of the N. indicum leaf and stem (ENIL and ENIS) on the expression of anti-inflammatory mediators in U937 human pre-monocytic cell models. In U937 cells stimulated with phorbol 12-myristate-13-acetate (PMA), pre-treatment with ENIS significantly inhibited the expression of both cyclooxygenase-2 (COX-2) mRNA and protein, which are associated with inhibition of the release of prostaglandin $E_2\;(PGE_2)$, whereas the inhibitory effects appeared weakly in ENIL. Moreover, ENIS significantly attenuated PMA-induced IkappaB ($I{\kappa}B$) degradation and suppressed elevated nuclear factor kappa B (NF-${\kappa}B$) nuclear translocation. Taken together, these findings provide important new insights that N. indicum exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the NF-kB signaling pathway.

Biodegradation of Phenol by Comamonas testosteroni DWB-1-8 Isolated from the Activated Sludge of Textile Wastewater (섬유 폐수 활성 슬러지에서 분리한 Comamonas testosteroni의 생물학적 페놀 분해)

  • Kwon, Hae Jun;Choi, Doo Ho;Kim, Mi Gyeong;Kim, Dong-Hyun;Kim, Young Guk;Yoon, Hyeokjun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.156-161
    • /
    • 2020
  • Since industrialization, the production and utilization of various chemicals has contributed to improving the quality of our lives, but the subsequent discharge of massive waste is inevitable, and environmental pollution is becoming more serious every day. Exposure to chemicals as a result of environmental pollution is having a negative effect on human health and the ecosystem, and cleaning up the polluted environment that can affect our lives is a very important issue. Toxic aromatic compounds have been detected frequently in soil, groundwater, and wastewater because of the extensive use of oil products, and phenol, which is used to produce synthetic resins, textiles, and dyes, is one of the major pollutants, along with insecticides and preservatives. Phenol can cause dyspnea, headache, vomiting, mutation, and carcinogenesis. Phenol-degrading bacterium DWB-1-8 was isolated from the activated sludge of textile wastewater; this strain was identified as Comamonas testosteroni by 16S rRNA gene sequencing. The optimal culture conditions for the cell growth and degradation of phenol were 0.7% K2HPO4, 0.6% NaH2PO4, 0.1% NH4NO3, 0.015% MgSO4·7H2O, 0.001% FeSO4·7H2O, an initial pH of 7, and a temperature of 30℃. The strain was also able to grow by using other toxic compounds, such as benzene, toluene, or xylene (BTX), as the sole source of carbon.

Physiological and Biochemical Characterization of Bacillus spp. from Polychaete, Perinereis aibuhitensis (갯지렁이(Perinereis aibuhitensis)에서 분리한 Bacillus spp.의 생리생화학적 특성 분석)

  • Shin, Seyeon;Yundendorj, Khorloo;Lee, Sang-Suk;Kang, Kyoung-Ho;Kahng, Hyung-Yeel
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.415-425
    • /
    • 2013
  • This study compared the characteristics of five Bacillus strains capable of aerobic and anaerobic growth, CBW3, CBW4, CBW9, CBW14 and EBW10. They were isolated and selected from a polychaete, Perinereis aibuhitensis, which is known as a good degrader of organic compounds in marine wetland. Based on a 16S rRNA sequence, CBW3 and CBW14 were found to share more than 99.8% similarity with B. nanhaiensis, B. arsenicus and B. barbaricus. CBW4, CBW9 and EBW10 shared 92.7%, 99.8%, and 99.8% similarity with B. anthracis, B. algicoa and B. thuringiensis, respectively. The temperature, salinity, and pH ranges of the cell growth of the Bacillus strains were $4-45^{\circ}C$, 0-17%, and pH 5-pH 9, respectively. All Bacillus strains were found to exhibit enzyme activities for the degradation of casein and starch. Notably, strain EBW10 exhibited the enzyme activities for all the tested macromolecules, DNA, casein, starch, cellulose, and four kinds of Tweens, which suggests the possibility that it had protease, amylase, cellulose, and lipase. All five Bacillus strains had alkaline phosphatase activities, and the strains CBW3, CBW4, and EBW10 also had acid phospatase. Strains CBW3 and EBW10 exhibited the enzyme activities both for esterase (C4) and esterase lipase (C8). The analysis of fatty acids revealed that in all strains, major fatty acids were anteiso $C_{15:0}$ and iso $C_{15:0}$.

Pro-apoptotic Effects of Platycodin D Isolated from Platycodon grandiflorum in Human Leukemia Cells (도라지 유래 사포닌 platycodin D에 의한 인체 백혈병세포의 apoptosis 유도)

  • Park, Sang Eun;Lee, Su Young;Shin, Dong Yeok;Jeong, Jin-Woo;Jin, Myung Ho;Park, Seon Young;Chung, Yoon Ho;Hwang, Hye Jin;Hong, Sang Hoon;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.389-398
    • /
    • 2013
  • Platycodin D is a major constituent of triterpene saponins, which is found in the root of Platycodon grandiflorum, Platycodi Radix, which is widely used in traditional Oriental medicine for the treatment of many chronic inflammatory diseases. Several pharmacological effects of this compound have been reported recently, such as anti-inflammation, immunogenicity, anti-adipogenesis, lowered cholesterol, and anti-cancer activity. However, the mechanism by which this action occurs is poorly understood. In this study, we found that platycodin D greatly increased the potential of the anti-proliferative effect in various cancer cell lines. Our data revealed that platycodin D treatment resulted in a time- and concentration-response growth inhibition of U937 cells by inducing apoptosis, as evidenced by the formation of apoptotic bodies, chromatin condensation, and the accumulation of cells in the sub-G1 phase. Apoptosis induction of U937 cells by platycodin D correlated with an increase in the Bax/Bcl-2 ratio and caused the down-regulation of IAP family members. In addition, platycodin D treatment resulted in proteolytic activation of caspase-3, the concomitant degradation of poly(ADP-ribose) polymerases, and the collapse of the mitochondria membrane potential (${\Delta}{\Psi}_m$). However, the cytotoxic effects induced by platycodin D treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrated the important role that caspase-3 played in the observed cytotoxic effect. These findings suggest that platycodin D may be a potential chemotherapeutic agent for use in the control of human leukemia U937 cells. These findings also provided important new insights into possible molecular mechanisms of the anti-cancer activity of platycodin D.

Inhibitory Effect of Camp Antagonist and Pka Inhibitors, and Stimulatory Effect of Adenylate Cyclase Agonist on Cathepsin K Processing in Cultured Mouse Osteoclasts (cAMP 길항제와 PKA 억제제 및 Adenylate Cyclase 촉진제의 백서 파골세포에서 Cathepsin K 생성에 대한 효과)

  • Shim, Youn-Soo
    • Journal of dental hygiene science
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Cathepsin K (cat K) is the major cysteine protease expressed in osteoclasts and was thought to play a key role in matrix degradation during bone resorption. It was shown that the intracellular maturation of cat K was prevented by the cAMP antagonist, Rp-cAMP, and the protein kinase A (PKA) inhibitors of KT5720 and H89. In contrast, forskolin, a adenylate cyclase agonist, rather induced Cat K processing and maturation in osteoclasts. Furthermore, to determine whether cat K processing and maturation signaling involves protein kinase C (PKC), mouse total bone cells were treated with calphostin C, a specific inhibitor of PKC, however, no effect was observed, indicating that calphostin C did not affect to osteoclast-mediated cat K processing and maturation. Thus, it is indicated that the cAMP-PKA signaling pathway regulates cat K maturation in osteoclasts. Since secreted proenzymes have the potential to reenter the cell via M6P receptor, to prevent this possibility, it was tested cAMP antagonist Rp-cAMP and the PKA inhibitors KT5720 and H89 in the absence or presence of M6P. Inhibition of cat K processing by Rp-cAMP, KT5720, or H89 was observed in a dose-dependent manner. Furthermore, the addition of M6P resulted in enhanced potency of Rp-cAMP, KT5720 and H89. These dose-dependently inhibited in vitro bone resorption with a potency similar to that observed for inhibition of cat K processing.

  • PDF