• Title/Summary/Keyword: cell death mechanism

Search Result 695, Processing Time 0.029 seconds

Ceramide-Mediated Cell Death Was Accompanied with Changes of c-Myc and Rb Protein

  • Moon, Soon-Ok;Lee, Jin-Woo
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.333-338
    • /
    • 1998
  • The sphingomyelin cycle and ceramide generation have been recognized as potential growth suppression signals in mammalian cells. Ceramide has been shown to induce differentiation, cell growth arrest, senescence, and apoptosis. Although the intracelluar target for the action of ceramide remains unknown, recent studies have demonstrated the role of cytosolic ceramideactivated protein phosphatase(CAPP). In this study, the cytotoxic effect of C2-ceramide, a synthetic cellpermeable ceramide analog, on HEp-2 cells and the mechanism by which ceramide induces cell death were investigated. The addition of exogenous C2-ceramide resulted in a concentration dependent cell death. Okadaic acid, a potent inhibitor of CAPP, enhanced ceramide-mediated cell death, which suggests that CAPP is not involved in this process. To understand the mechanism of action of ceramide, we studied the relationship between ceramide and c-Myc and pRb which are defined components of cell growth regulation. Western blot analyses revealed that C2-ceramide (10${\mu}M$) induced c-Myc down-regulation, but there were no significant changes in pRb. However, treatment of okadaic acid (10 nM) enhanced c-Myc and pRb down-regulation. Reduction of the amount of c-Myc and pRb occurred during HEp-2 cell death. These results suggest that the cytotoxic effect of ceramide in HEp-2 cells may not be mediated through the action of CAPP and that the downstream target for ceramide is c-Myc and pRb.

  • PDF

BI-1 enhances Fas-induced cell death through a Na+/H+-associated mechanism

  • Lee, Geum-Hwa;Kim, Hyung-Ryong;Chae, Han-Jung
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.393-398
    • /
    • 2014
  • The role of Bax inhibitor-1 (BI-1) in the protective mechanism against apoptotic stimuli has been studied; however, as little is known about its role in death receptor-mediated cell death, this study was designed to investigate the effect of BI-1 on Fas-induced cell death, and the underlying mechanisms. HT1080 adenocarcinoma cells were cultured in high concentration of glucose media and transfected with vector alone (Neo cells) or BI-1-vector (BI-1 cells), and treated with Fas. In cell viability, apoptosis, and caspase-3 analyses, the BI-1 cells showed enhanced sensitivity to Fas. Fas significantly decreased cytosolic pH in BI-1 cells, compared with Neo cells, and this decrease correlated with BI-1 oligomerization, mitochondrial $Ca^{2+}$ accumulation, and significant inhibition of sodium-hydrogen exchanger (NHE) activity. Compared with Neo cells, a single treatment of BI-1 cells with the NHE inhibitor EIPA or siRNA against NHE significantly increased cell death, which suggests that the viability of BI-1 cells is affected by the maintenance of intracellular pH homeostasis through NHE.

2-Chloroethylethyl Sulfide Induces Apoptosis and Necrosis in Thymocytes

  • Hur, Gyeung-Haeng;Kim, Yun-Bae;Shin, Sung-Ho
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.183-188
    • /
    • 1998
  • 2-chloroethylethyl sulfide (CEES) is an alkylating agent that readily reacts with a wide variety of biological molecules causing metabolic abnormality. The mechanism of cell death during CEES injury is poorly understood. We have examined the effect of exposure of thymocytes with various concentrations of CEES to determine the pattern of cell death in thymocytes injury induced by CEES. In the present study, we show that two patterns of cell death occurred by either one of two mechanisms: apoptosis and necrosis. Exposure to low level of CEES (100 ${\mu}M$) for 5 h caused an induction of apoptosis on thymocytes, as identified by the following criteria: DNA fragmentation visualized by the characteristic "ladder" pattern was observed upon agarose gel electrophoresis and morphological features were revealed by microscopical observations. In contrast, exposure to high levels of CEES (500 ${\mu}M$) induce necrotic features such as cell lysis. Thus, depending on the concentrations, CEES can result in either apoptotic or necrotic cell damage. Our findings suggest that thymocytes which are not killed directly, but merely injured by low levels of CEES, are able to activate an internally-programmed cell death mechanism, whereas thymocytes receiving severe damages apparently can not.

  • PDF

Protective Effects of Danguiyonghoihwan on Glutamate-induced Auditory Sensorineuronal Cell Death (당귀용회환(當歸龍薈丸)의 glutamate에 의한 청신경세포(聽神經細胞) 손상(損傷) 보호효과(保護效果))

  • Yu, Dong-Hee;Park, Rae-Gil;So, Hong-Seob;Lee, Ki-Nam;Chong, Myong-Soo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.95-111
    • /
    • 2012
  • Objective : The water extract of Danguiyonghoihwan (DGYHW) has been traditionally used in treatment of tinnitus in Oriental Medicine. However, little is known about the mechanism by which DGYHW rescues auditory neuronal cells from injury damages. Therefore, in this study I effort to elucidate the mechanism of the cytoprotective effect of the DGYHW extract on glutamate-induced auditory sensorineuronal cell death. Methods : I determined the elevated cell viability by DGYHW extract on glutamate-induced auditory sensorineuronal cell death. Glutamate induced neuronal damage in oranotypic explant culture also, glutamate decreased cell viability on VOT-33 cells but pretreatment with DGYHW inhibited cell death. Results : One of the main mediator of glutamate-induced cytotoxicity was known to generation of reactive oxygen species (ROS). Pretreatment with DGYHW inhibited this ROS generation from glutamated-stimulated VOT-33 cells. Also, I identified that the ROS-induced DCF-DA green fluorescence is reduced by DGYHW pretreatment. The critical markers of apoptotic cell death were cleavages of procaspase-3 protease protein. So I checked the expression level and cleavage of procaspase-3 protease protein. Glutamate-treated VOT-33 cells were shown to have cleavage of procaspase-3 protease proteins and following reduction of expression of these proteins. But I found that pre-treatment with DGYHW protects glutamate-induced changes of biochemical marker protein, caspase-3. Conclusion : These findings indicated that DGYHW may prevent cell death from glutamate induced VOT-33 cell death by inhibiting the ROS generation and modulation of protein expressions in procaspase-3, catalase and Bcl-2.

High-dose lipopolysaccharide induced autophagic cell death in bovine mammary alveolar cells

  • Park, Jin-Ki;Yeo, Joon Mo;Cho, Kwanghyun;Park, Hyun-Jung;Lee, Won-Young
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • Bovine mammary epithelial (MAC-T) cells are commonly used to study mammary gland development and mastitis. Lipopolysaccharide is a major bacterial cell membrane component that can induce inflammation. Autophagy is an important regulatory mechanism participating in the elimination of invading pathogens. In this study, we evaluated the mechanism underlying bacterial mastitis and mammary cell death following lipopolysaccharide treatment. After 24 h of 50 ㎍/mL lipopolysaccharide treatment, a significant decrease in the proliferation rate of MAC-T cells was observed. However, no changes were observed upon treatment of MAC-T cells with 10 ㎍/mL of lipopolysaccharide for up to 48 h. Thus, upon lipopolysaccharide treatment, MAC-T cells exhibit dose-dependent effects of growth inhibition at 10 ㎍/mL and death at 50 ㎍/mL. Treatment of MAC-T cells with 50 ㎍/mL lipopolysaccharide also induced the expression of autophagy-related genes ATG3, ATG5, ATG10, ATG12, MAP1LC3B, GABARAP-L2, and BECN1. The autophagy-related LC3A/B protein was also expressed in a dose-dependent manner upon lipopolysaccharide treatment. Based on these results, we suggest that a high dose of bacterial infection induces mammary epithelial cell death related to autophagy signals.

Mechanism of Photodynamic Therapy using 9-hydroxypheophorbide-alpha on HeLa Cell Lines

  • Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • Photodynamic therapy(PDT) is a treatment utilizing the generation of singlet oxygen and other reactive oxygen species(ROS), which selectively accumulate in target cells. The aim of present work is to investigate the photodynamic therapy mechanism of 9-HpbD-a-mediated PDT in HeLa cell lines. We studied the general reactive oxygen species(G-ROS) activation after 9-HpbD-a PDT using fluorescence stain with $H_2DCF-DA$. G-ROS activation observed after 9-HpbD-a PDT and higher activation condition was 1 hour after PDT at 0.5 ${\mu}g/ml$ 9-HpbD-a concentration. Sodium azide and reduced glutathione(the singlet oxygen quencher) could protect HeLa cells from cell death induced by 9-HpbD-a PDT. But D-mannitol(the hydroxyl radical scavenger) could not protect cell death. Singlet oxygen played a decisive role in 9-HpbD-a PDT induced HeLa cell death. Type II reaction was the main type of ROS formation at 9-HpbD-a PDT.

  • PDF

MECHANISM OF CAPSAICIN-INDUCED APOPTOTIC CELL DEATH IN STOMACH CANCER CELL

  • Pyo, Jong-Oak;Yang, Kyung-Min;Rina Yu;Choe, Suck-Young;Kim, Byung-Sam
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.153-153
    • /
    • 2001
  • Capsaicin, a major pungent ingredient in red hot pepper, has long been used in food additives and drugs. We have previously reported that capsaicin induces apoptosis in Korean stomach cancer cell line, SNU-1. In the present study, the mechanism of capsaicin-induced apoptotic cell death was investigated in SNU-1. Treatment of capsaicin to SNU-1 produced dose-dependent increase of apoptotic cell death and [Ca2+]$_{i}$ concentrations.(omitted)d)

  • PDF

Effect of Fructus ligustri Lucidi Extract on Cell Viability in Human Glioma Cells

  • Kim, Jin-Won;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.199-205
    • /
    • 2009
  • It is unclear whether Fructus ligustri Lucidi (FLL) extract anti-proliferative effect in human glioma cells. The present study was therefore undertaken to examine the effect of FLL on cell viability and to determine the underlying mechanism in A172 human glioma cells. Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Apoptosis was measured by Annexin-V binding assay and cell cycle analysis. Activation of kinases and caspase-3 was estimated by Western blot analysis. FLL resulted in apoptotic cell death in a dose- and time-dependent manner. FLL-induced cell death was not associated with reactive oxygen species generation. Western blot analysis showed that FLL treatment caused down-regulation of PI3K/Akt pathway, but not ERK. The PI3K/Akt inhibitor LY984002 sensitized the FLL-induced cell death and overexpression of Akt prevented the cell death. FLL induced caspase-3 activation and the FLL-induced cell death was prevented by caspase inhibitors. These findings indicate that FLL results in a caspase-dependent cell death through a P13K/Akt pathway in human glioma cells. These data suggest that FLL may serve as a potential therapeutic agent for malignant human gliomas.

Effect of Lycii cortex radicis Extraction on Glioma Cell Viability

  • Kim, Seang-Jae;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.17-26
    • /
    • 2009
  • Objectives: Little information is available regarding the effect of Lycii cortex radicis (LCR) on cell viability in glioma cells. This study was therefore undertaken to examine the effect of LCR on cell survival in U87MG human glioma cells. Methods: Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Reactive oxygen species (ROS) generation was measured using the fluorescence probe DCFH-DA. Activation of Akt and extracellular signal-regulated kinase (ERK) and activation of caspase-3 were estimated by Western blot analysis. Results: LCR resulted in apoptotic cell death in a dose- and time-dependent manner. LCR increased reactive oxygen species (ROS) generation and LCR-induced cell death was also prevented by antioxidants, suggesting that ROS generation played a critical role in LCR-induced cell death. Western blot analysis showed that LCR treatment caused down-regulation of Akt and ERK. The LCR-induced cell death was increased by the inhibitors of Akt and ERK. Activation of caspase-3 was stimulated by LCR and caspase inhibitors prevented the LCR-induced cell death. Conclusion: These findings suggest that LCR results in human glioma cell death through a mechanism involving ROS generation, down-regulation of Akt and ERK, and caspase activation.

  • PDF

Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

  • Oh, Su-Jin;Ryu, Chung-Kyu;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • Background: EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods: C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of cytokine secretion. Normal myeloid-dendritic cell (DC) was ex vivo cultured from bone marrow hematopoietic stem cells of C57BL/6 mice with GM-CSF and IL-4 to analyze the DC uptake of dead tumor cells and to observe the effect of EY-6 on the normal DC. Results: EY-6 killed the MC38 tumor cells in a dose dependent manner (25, 50 and $100{\mu}M$) with carleticulin induction. And EY-6 induced the secretion of IFN-${\gamma}$ but not of TNF-${\alpha}$ from the MC38 tumor cells. EY-6 did not kill the ex-vivo cultured DCs at the dose killing tumor cells and did slightly but not significantly induced the DC maturation. The OVA-specific cross-presentation ability of DC was not induced by chemical treatment (both MHC II and MHC I-restricted antigen presentation). Conclusion: Data indicate that the EY-6 induced tumor cell specific and immunological cell death by modulation of tumor cell phenotype and cytokine secretion favoring induction of specific immunity eliminating tumor cells.