• Title/Summary/Keyword: cell cycles

Search Result 533, Processing Time 0.028 seconds

Development of In situ PCR Method Using Primer Polymers (프라이머 중합체를 이용한 원위치 중합효소 연쇄반응 In situ PCR 방법의 개발)

  • 장진수;이재영
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.167-171
    • /
    • 2004
  • Reduction in the leakage of the amplified PCR product out of cell is required for effective in situ PCR. For this purpose, primers with complementary tail sequences at their 5' sides were utilized to synthesize high molecular weight PCR products, but it is time-consuming and causes deterioration of cellular appearance with many PCR cycles. Therefore, it is required to optimize the PCR condition with minimal PCR cycles. To achieve the pur-pose, primer polymers were made without the target DNA in tube from nonspecific amplification with tailed primers and treated onto the fixed Molt/LAV cells on the glass slide for the 20 cycle-in situ PCR, in which the appropriate target signals were observed for the possible use of primer polymers in in situ PCR.

Application of an electroless copper coating in alkaline bath to preparation of the metal hydride electrode (금속 수소화물 전극제조에 있어서 알카리 무전해 구리 도금법의 응용)

  • CHOI, Jeon;PARK, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.3 no.2
    • /
    • pp.9-15
    • /
    • 1992
  • Electroless copper plating method using an alkaline bath have been employed in copper coating of the (LM)Ni4.5Co0.1MnO.2A10.2 hydrogen storage alloy powders for electrode preparation. The plating were conducted without any pretreatment of alloy powders. For the preparation of the electrodes, about 0.12g of the copper coated alloy powder (copper to alloy ratio 1/3 by weight) was compacted with pressure of 6 tons/cm2 at room temperature. The disk-type compacts had a diameter of 10mm and thickness of about 0.24mm. The electrode characteristics were examined through SEM observations and electrochemical measurements in a half cell. The electrochemical measurement showed that the maximum discharge capacity of the electrodes prepared by using alkaline bath were 245mAh per gram of coated alloy (327mAh per gram of alloy) and appeared a considerable degradation with increasing number of cycles. The decrease of the discharge capacity after 100 cycles was about 30% It can be suggested that, with a slight of improvement, this electroless copper plating method could be applied to the preparation of the rare earth-nickel based alloy electrode.

  • PDF

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Lee, Byung-Gwan;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.207-211
    • /
    • 2012
  • Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

Application of Regularized Linear Regression Models Using Public Domain data for Cycle Life Prediction of Commercial Lithium-Ion Batteries (상업용 리튬 배터리의 수명 예측을 위한 고속대량충방전 데이터 정규화 선형회귀모델의 적용)

  • KIM, JANG-GOON;LEE, JONG-SOOK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.592-611
    • /
    • 2021
  • In this study a rarely available high-throughput cycling data set of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles including in-cycle temperature and per-cycle IR measurements. We worked out own Python codes which reproduced the various data plots and machine learning approaches for cycle life prediction using early cycles and more details not presented in the article and the supplementary information. Particularly, we applied regularized ridge, lasso and elastic net linear regression models using features extracted from capacity fade curves, discharge voltage curves, and other data such as internal resistance and cell can temperature. We found that due to the limitation in the quantity and quality of the data from costly and lengthy battery testing a careful hyperparameter tuning may be required and that model features need to be extracted based on the domain knowledge.

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu;To Thi Thu Ha;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.125-136
    • /
    • 2024
  • This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.

Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis (수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가)

  • Jun Ho, Park;Kwang Seop, Im;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.496-513
    • /
    • 2022
  • In this study, we sought to verify the applicability of anion exchange membrane water electrolysis system using FAA-3-50, Neosepta-ASE, Sustainion grade T, and Fujifilm type 10, which are commercial anion exchange membranes. The morphology of the commercial membranes and the elements on the surface were analyzed using SEM/EDX to confirm the distribution of functional groups included in the commercial membranes. In addition, mechanical strength and decomposition temperature were measured using UTM and TGA to check whether the driving conditions of the water electrolyte were satisfied. The ion exchange capacity and ion conductivity were measured to understand the performance of anion exchange membranes, and the alkaline resistance of each commercial membrane was checked and durability test was performed because they were driven in an alkaline environment. Finally, a membrane-electrode assembly was manufactured and a water electrolysis single cell test was performed to confirm cell performance at 60℃, 70℃, and 80℃. The long-term cell test was measured 20 cycles at other temperatures to compare water electrolysis performance.

Effects of Different Infusion Frequency of Liquid Nitrogen on Human Embryo Development and Pregnancy Rates after Freezing and Thawing (인간 배아 동결 해빙시 액체질소의 분사속도가 배아 발달 및 임신에 미치는 영향)

  • Kim, Young-Ah;Seo, Seong-Seog;Kim, Mi-Ran;Hwang, Kyung-Joo;Park, Dong-Wook;Jo, Mi-Yeong;Ryu, Hee-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.4
    • /
    • pp.287-293
    • /
    • 2001
  • Objective : To investigate the efficacy of high infusion frequency of liquid nitrogen on pregnancy in human embryo after freezing and thawing. Materials and Methods: 150 infertile patients underwent 162 consecutive thawing-ET cycles. In the high infusion frequency group (Group A), 47 patients (50 cycles) underwent cryopreservation with high infusion frequency of liquid nitrogen. In the low infusion frequency group (Group B), 103 patients (112 cycles) underwent cryopreservation with low infusion frequency of liquid nitrogen. We analyzed the clinical characteristics, fertilization rates, development of embryo, good quality embryo ratio, implantation rates, and pregnancy rates between these two groups. Results: There was no difference between the groups with regard to clinical characteristics (mean age, infertility duration, infertility factors, hormone profile), mean number of oocyte retrieval, fertilization rates, and mean embryo number of transfers. The survival rates in group A was 64.9% (228 of 350 embryos), and among the 228 embryos 190 embryos (83.3%) which progressed to the two- to eight-cell stage. After thawing, the embryo numbers were 65 (34.2%), 29 (15.3%), 35 (18.4%), and 37 (19.5%) of grades 1, 2, 3, and above 4, respectively. The survival rates in group B was 63.8% (482 of 755 embryos), and among the 482 embryos 465 embryos (96.5%) which progressed to the two- to eight-cell stage. After thawing, the embryo numbers were 106 (22.8%), 94 (20.2%), 89 (19.1%), and 112 (24.1%) of grades 1, 2, 3, and above 4, respectively. There was no difference in embryo quality change after the freezing-thawing procedure between the groups. Implantation rates (31.1% vs. 34.3%) were not significant. However hCG positive rates in group A (40%) were higher than group B, but not statistically significant. Clinical pregnancy rate (26% vs. 25.9%), on going pregnancy rates (>20 weeks) were not significant (26% vs. 25%). Conclusion: We compared embryo quality change, survival rates, and pregnancy rates between high infusion frequency group and low infusion frequency group and the results were similar between the two groups. Therefore, high infusion frequency of liquid nitrogen for cryopreservation is a worthy method to preserve in human embryos.

  • PDF

Application of Cumulus Cells as Factors to Predict the Outcome of IVF-ET (체외수정시술의 결과를 예측할 수 있는 인자로서 난구세포의 활용에 관한 연구)

  • Kim, Kwang-Dae;Kim, Ki-Hyung;Na, Yong-Jin;Lee, Kyu-Sup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.419-432
    • /
    • 1999
  • Objective: To establish the evaluation system of the quality of oocytes on the basis of the incidence of cumulus cells apoptosis, to investigate the relationships beween the incidence of cumulus cells and the outcomes of IVF-ET. Method: Thirth-four cycles undergoing controlled ovarian hyperstimulation for IVF-ET with tubal infertility (23 cycles) or unexplained infertility (11 cycles) were included in this study. Cumulus cell masses surrounding mature oocyte and co-culture of embryos with autologous cumulus cells during IVF-ET process. The incidence of apoptosis in cumulus cells was assessed by apoptosis detection kit fluorescein. The effect of co-culture using cumulus cells and the incidence of cumulus cells apoptosis. Results: The results were as follows: 1. The incidence of apoptosis in cumulus cells markedly increased in patients aged 40 or over, while the fertilization rate was greatly decreased in those age group. 2. Apoptosis in cumulus cells was found in both the fertilized oocytes and unfertilized oocytes, but the incidence of apoptosis was higher in unfertilized oocytes. 3. There is no clear correlation between apoptosis in cumulus cells and the number of oocytes retrieved. However, the incidence of apoptosis was increased when the number of oocytes retrieved was 5 and fewer in comparison with $6{\sim}10$. 4. Embryo grade was significantly affected by the incidence of apoptosis in cumulus cells. 5. Pregnancy rate of IVF-ET per cycle was 29.4%, and the pregnant group had the higher fertilization rate and a significantly lower incidence of apoptosis in cumulus cells compared with the nonpregnant group. 6. When cumulus cells were used as helper cells in the co-culture of the embryo, in vitro activity of cumulus cells based on morphological change and proliferation did not influence the quality of embryo, but was closely associated with the implantation rate and pregnancy rate, which was enhanced when morphological changes and proliferation of cumulus cells was more active. 7. This difference in the outcome of IVF-ET according to in vitro activity of cumulus cells used for co-cultue was not associated with the incidence of apoptosis in cumulus cells; but rather had likely relations with the different secretion pattern of protein, which may be an embryo trophic factor by cumulus cells. Conclusion: These results suggest that the incidence of apoptosis in cumulus cells can be used in predicting oocyte qualities and the outcomes of IVF-ET. And the effect of co-culture largely depends on the in vitro activity of cumulus cells as well.

  • PDF

Fabrication of LiMn2O4 Thin-Film Rechargeable Batteries by Sol-Gel Method and Their Electrochemical Properties (졸-겔 방법을 이용한 LiMn2O4 박막 이차 전지 제작 및 전기화학적 특성 조사)

  • Lee, J.H.;Kim, K.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • Structural and electrochemical properties of spinel oxide $LiMn_2O_4$ thin films prepared by using a sol-gel method on Pt/Ti/$SiO_2$/Si substrates were investigated. When Li/Mn molar ratio of the film was smaller than 0.5, $Mn_2O_3$hase was found to coexist with $LiMn_2O_4$. Half-cell batteries fabricated using the $LiMn_2O_4$ films as the cathode were put into chargedischarge (C-D) cycles and the change in structural properties of the cathode after the cycles was examined by X-ray diffraction and Raman spectroscopy. As the C-D cycle number increases, the discharge capacity of pure $LiMn_2O_4$ battery gradually decreases, being reduced to 72% of the initial capacity at 300 cycles. Such capacity fading is attributable to the decrease in the number of $Li^+$ ions that return to the tetrahedral sites of the spinel structure during the discharge step and the resultant increase in $Mn^{4+}$ density in the film. Also, $Mn_2O_3$ phase gradually appeared in the film as the cycle number increases.

Study on the Platinum Deposition in Membrane of Polymer Electrolyte Membrane Fuel Cell during Electrode Degradation Process (고분자전해질 연료전지의 전극 열화 과정에서 고분자막에 석출된 백금에 관한 연구)

  • Oh, Sohyeong;Gwon, Hyejin;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.202-207
    • /
    • 2022
  • The study on electrode degradation of Proton Exchange Membrane Fuel Cell (PEMFC) was mainly studied on the particle growth and active area reduction of Pt on the electrode. The degradation of the electrode catalyst Pt in contact with the membrane affects the deterioration of the polymer membrane, but there are not many studies related to this. In this study, the phenomenon of the deposition of deteriorated Pt inside the polymer membrane during the accelerated electrode catalyst degradation test and its effects were studied. The voltage change (0.6 V ↔ 0.9 V) was repeated up to 30,000 cycles to accelerate the platinum degradation rate. When the voltage change cycle was repeated while oxygen was introduced into the cathode, the amount of Pt deposited inside the film was larger than when nitrogen was introduced. As the number of voltage change cycles increased, the amount of Pt deposited inside the membrane increased, and Pt dissolved in the cathode moved toward the anode, showing a uniform distribution throughout the membrane at 20,000 cycles. In the process of the accelerated electrode catalyst degradation test, the hydrogen crossover current density of the membrane did not change, and it was confirmed that the deposited Pt did not affect the durability of the membrane.