• Title/Summary/Keyword: cell cycle

Search Result 2,779, Processing Time 0.032 seconds

RNA-sequencing Profiles of Cell Cycle-Related Genes Upregulated during the G2-Phase in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.185-189
    • /
    • 2019
  • To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.

Cell Cycle Alteration and Apoptosis Induced by Ceramide in IM-9 Cells (IM-9세포에 있어서 세라마이드에 의한 세포주기 변화와 아포프토시스)

  • 윤기호;최관수;김원호;최경희;김미영
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.689-694
    • /
    • 1995
  • Sphingolipids play important roles in cell regulation and signal transduction. Recently, a sphinogomyelin cycle has been described in which activation of neutral sphingomyelinase leads to the breakdown of sphingomyelin and the generation of ceramide. Ceramide, in turn, has emerged as a candidate intracellular mediator for the action of certain cell agonists and has multiple biologic actions. Ceramide is a potent suppressor of cell growth and an inducer of apoptosis. The present studies show that exposure of IM-9 cells to ceramide resulted in internucleosomal cleavage of DNA, yielding laddered patterns of oligonucleosomal fragments characteristic of apoptosis. DNA fragmentation induced by ceramide was also confirmed by diphenylamine assay. The effect of ceramide on cell cycle progression was also studied. The addition of ceramide increase G$_{1}$ phase distribution in cell cycle. Cell cycle-related cyclin D$_{1}$ gene expression was decreased in a time-dependent manner. These results suggest that apoptosis induced by ceramide is related to cell cycle associated with the alteration of cell cycle in IM-9 cells.

  • PDF

Cell Cycle and Cancer

  • Park, Moon-Taek;Lee, Su-Jae
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • Cancer is frequently considered to be a disease of the cell cycle. As such, it is not surprising that the deregulation of the cell cycle is one of the most frequent alterations during tumor development. Cell cycle progression is a highly-ordered and tightly-regulated process that involves multiple checkpoints that assess extracellular growth signals, cell size, and DNA integrity. Cyclin-dependent kinases (CDKs) and their cyclin partners are positive regulators of accelerators that induce cell cycle progression; whereas, cyclin-dependent kinase inhibitors (CKIs) that act as brakes to stop cell cycle progression in response to regulatory signals are important negative regulators. Cancer originates from the abnormal expression of activation of positive regulators and functional suppression of negative regulators. Therefore, understanding the molecular mechanisms of the deregulation of cell cycle progression in cancer can provide important insights into how normal cells become tumorigenic, as well as how cancer treatment strategies can be designed.

Protein kinase와 cell cycle

  • 유일재
    • The Microorganisms and Industry
    • /
    • v.19 no.2
    • /
    • pp.2-10
    • /
    • 1993
  • 이 총론에서는 cell cycle의 조절에 관계하는 p34cdc kinase의 특성과 기질 그리고 cell cycle에서의 역할을 살펴보고, 또 cell cycle에서와 여러가지 세포내의 현상에 중요한 역할을 하는 것으로 알려진 casein kinase II의 특성과 기질 그리고 cell cycle에서의 역할을 살펴보고자 한다. 그리고 이런 효소들을 연구하는 데 필수적인 방법이나 시약들로 소개하고자 한다.

  • PDF

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.

Anticancer Effects of the Isoflavone Extract from Chungkukjang via Cell Cycle Arrest and Apoptosis in MDA-MB-453 Cells (청국장에서 얻은 Isoflavone의 MDA-MB-453세포에서 항암효과 및 관련 기전)

  • Shin, Jin Young;Kim, Taehee;Kim, An Keun
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • The objective of this study is to evaluate the anticancer effects of the isoflavone extract from Chungkukjang in human breast cancer, MDA-MB-453 cells. For this study, MDA-MB-453 cells were treated with 12.5, 25, and $50{\mu}g$ isoflavone extract for 24, 48, and 72 hr. Cell proliferations were decreased in a time- and dose-dependent manner. Reduced cell proliferation was suspected by apoptosis or cell cycle arrest. Therefore, after treatment of $50{\mu}g$ isoflavone extract, apoptotic cells were investigated by annexin V staining. The results indicated that isoflavone extract increased the number of early apoptotic cells compared with control. Cleaved PARP was also increased. Next, we investigated the cell cycle and related proteins. The isoflavone extract leads to cell cycle arrest at the G2/M phase. Moreover isoflavone extract had influenced cell cycle relate proteins such as cyclin B1, cyclin A, and p21. These results suggest that isoflavone extract from Chungkukjang induce apoptosis and cell cycle arrest at G2/M phase via regulation of cell cycle-related proteins in MDA-MB-453 cells.

Cell Cycle Regulation in the Budding Yeast

  • Nguyen, Cuong;Yoon, Chang-No;Han, Seung-Kee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.278-283
    • /
    • 2005
  • Cell cycle is regulated cooperatively by several genes. The dynamic regulatory mechanism of protein interaction network of cell cycle will be presented taking the budding yeast as a sample system. Based on the mathematical model developed by Chen et at. (MBC, 11,369), at first, the dynamic role of the feedback loops is investigated. Secondly, using a bifurcation diagram, dynamic analysis of the cell cycle regulation is illustrated. The bifurcation diagram is a kind of ‘dynamic road map’ with stable and unstable solutions. On the map, a stable solution denotes a ‘road’ attracting the state and an unstable solution ‘a repelling road’ The ‘START’ transition, the initiation of the cell cycle, occurs at the point where the dynamic road changes from a fixed point to an oscillatory solution. The 'FINISH' transition, the completion of a cell cycle, is returning back to the initial state. The bifurcation analysis for the mutants could be used uncovering the role of proteins in the cell cycle regulation network.

  • PDF

Studies on the cell cycle of saccharomyces cerevisiae by electron spin resonance spectroscopy (전자스핀공명스펙트럼에 의한 saccharomyces cerevisiae의 세포환 연구)

  • 임형순;강사욱
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.44-51
    • /
    • 1988
  • The intracellular free radicals produced at different stages of cell cycle of Saccharomyces cerevisiae ATCC 24858 were investigated by means of electron spin resonance(ESR) spectroscopy. The synchronized cells by repeated starvation and refeeding revealed different ESR spectral pattern compared to that of asynchronized cells. Each spectrum centered at g=2.005, which indicates free radicals. The relative spin concentration was maximat at the end of DNA increase. The variation of the relative spin concentration at each distinct stage of the cell cycle was evaluated in relation to ascorbate concentration, L-galactonolactone oxidase activity, and ascorbate oxidase activity. The highest activities of L-galactonolactone oxidase and ascorbate oxidase were detected just before and at the maximum of relative spin concentration, respectively. And ascorbate concentration fluctuated through each stage of cell cycle with the changes of relative spin concentration, L-galactonolactone oxidase activity, and ascorbate oxidase activity. Thus it is suggested that intracellular free radicals should be related to cell cycle, interacted with ascorbate, and may play an important role in the cell cycle of Saccharomyces cerevisiae.

  • PDF

The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

  • Pan, Li;Zhao, Yuan;Yuan, Zhijie;Farouk, Mohammed Hamdy;Zhang, Shiyao;Bao, Nan;Qin, Guixin
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins ${\alpha}2$, ${\alpha}3$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin ${\alpha}2$, ${\alpha}6$, and ${\beta}1$ were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.

Retinoic Acid Increases the Cell Cycle Progression of Human Gingival Fibroblasts by Increasing Cyclin E and CDK 2 Expression and Decreasing $p21^{WAF1/CIP1}$ and $p16^{INK4A}$ Expression

  • You, Hyung-Keun;Seo, Se-Jeong;Kim, Kang-Ju;Choi, Na-Young;You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.115-120
    • /
    • 2012
  • Retinoic acid plays an important role in the regulation of cell growth and differentiation. In our present study, we evaluated the effects of all-trans retinoic acid (RA) on cell proliferation and on the cell cycle regulation of human gingival fibroblasts (HGFs). Cell proliferation was assessed using the MTT assay. Cell cycle analysis was performed by flow cytometry, and cell cycle regulatory proteins were determined by western blot. Cell proliferation was increased in the presence of a 0.1 nM to 1 ${\mu}M$ RA dose range, and maximal growth stimulation was observed in cells exposed to 1 nM of RA. Exposure of HGFs to 1 nM of RA resulted in an augmented cell cycle progression. To elucidate the molecular mechanisms underlying cell cycle regulation by RA, we measured the intracellular levels of major cell cycle regulatory proteins. The levels of cyclin E and cyclin-dependent kinase (CDK) 2 were found to be increased in HGFs following 1 nM of RA treatment. However, the levels of cyclin D, CDK 4, and CDK 6 were unchanged under these conditions. Also after exposure to 1 nM of RA, the protein levels of $p21^{WAF1/CIP1}$ and $p16^{INK4A}$ were decreased in HGFs compared with the control group, but the levels of p53 and pRb were similar between treated and untreated cells. These results suggest that RA increases cell proliferation and cell cycle progression in HGFs via increased cellular levels of cyclin E and CDK 2, and decreased cellular levels of $p21^{WAF1/CIP1}$ and $p16^{INK4A}$.