• Title/Summary/Keyword: cell culture analysis

Search Result 864, Processing Time 0.027 seconds

Detection of Human Adenoviruses and Enteroviruses in Korean Oysters Using Cell Culture, Integrated Cell Culture-PCR, and Direct PCR

  • Choo Yoe-Jin;Kim Sang-Jong
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.162-170
    • /
    • 2006
  • Oysters are known to be carriers of food-born diseases, but research on viruses in Korean oysters is scarce despite its importance for public health. We therefore tested oysters cultivated in Goheung, Seosan, Chungmu, and Tongyeong, for viral contamination using cell culture and integrated cell culture PCR (ICC-PCR) with Buffalo green monkey kidney (BGMK) and human lung epithelial (A549) cells. Additional screens via PCR, amplifying viral nucleic acids extracted from oysters supplemented our analysis. Our methods found 23.6 %, 50.9 %, and 89.1 % of all oysters to be positive for adenoviruses when cell culture, ICC-PCR, and direct PCR, respectively, was used to conduct the screen. The same methodology identified enteroviruses in 5.45%, 30.9%, and 10.9% of all cases. Most of the detected enteroviruses (81.3%) were similar to poliovirus type 1; the remainder resembled coxsackievirus type A1. A homology search with the adenoviral sequences revealed similarities to adenovirus subgenera C (type 2, 5, and 6), D (type 44), and F (enteric type 40 and 41). Adenovirus-positive samples were more abundant in A549 cells (47.3%) than in BGMK cells (18.2 %), while the reverse was true for enteroviruses (21.8 % vs. 14.5 %). Our data demonstrate that Korean oysters are heavily contaminated with enteric viruses, which is readily detectable via ICC-PCR using a combination of A549 and BGMK cells.

Detection and Molecular Identification of Human Enteric Viruses in Urban Rivers in Korea

  • Lee, Cheong-Hoon;Kim, Sang-Jong
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.171-171
    • /
    • 2008
  • We monitored the occurrence of human enteric viruses in urban rivers by cell culture-PCR and RT-nested PCR. Water samples were collected monthly or semimonthly between May 2002 and March 2003 in four urban tributaries. Enteric viruses were detected by RT-nested PCR and cell culture-PCR based on a combination of Buffalo Green monkey kidney (BGMK) and A549 cell lines, followed by phylogenetic analysis of amplicons. By RT-nested PCR analysis, 45 (77.6%), 32 (55.2%), 32 (55.2%), 26 (44.8%), 12 (20.7%), 2 (3.4%), 4 (6.9%), and 4 (6.9%) of 58 samples showed positive results with adenoviruses, enteroviruses, noroviruses (NV) genogroup I (GI) and II (GII), reoviruses, hepatitis A viruses, rotaviruses and sapoviruses, respectively. Adenoviruses were most often detected and only eight (13.8%) samples were negative for adenoviruses and positive for other enteric viruses in the studied sites. Thirty-one (77.5%) of the 40 samples were positive for infectious adenoviruses and/or enteroviruses based on cell culture-PCR, and the frequency of positive samples grown on A549 and BGMK (65.0%) was higher than that grown on BGMK alone (47.5%). The occurrence of each enteric virus, except reoviruses and hepatitis A viruses was not statistically correlated with the water temperature and levels of fecal coliforms according to Binary logistic regression model. By sequence analysis, most strains of adenoviruses and enteroviruses detected in this study are similar to the causative agent of viral diseases in Korea and most NV GI- and GII-grouped strains were closely related to the reference strains from China and Japan, and GII/4-related strains had similar sequences to strains recognized as a worldwide epidemic outbreak. Our results suggested that monitoring human enteric viruses is necessary to improve microbial quality and cell culture-PCR using the combination of A549 and BGMK cells and the adenovirus detection by PCR could be useful for monitoring viral contamination in the aquatic environment.

  • PDF

BcI-2 Over-expression Reduced the Serum Dependency and Improved the Nutrient Metabolism in a NS0 Cells Culture

  • Tey Beng Ti;Al-Rubeai Mohamed
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.254-261
    • /
    • 2005
  • The over-expression of Bcl-2 has greatly improved the culture period, specific growth rate, and maximum viable cell density of NS0 cells culture under low serum condition. Further analysis of these data suggests that a saturation model of the Monod type can be used to represent the relationships of specific growth rate and initial serum concentration. The ${\mu}_{max}$ and $K_s$ for the Bcl-2 cell line is $0.927day^{-1}\;and\;0.947\%(v/v)$ respectively, which are $21\%$ greate and $7\%$ lower respectively than its control counterpart. Study on the amino acid supplementation revealed that Bcl-2 cell lines possess greater improvement in the specific growth rate and maximum viable cell density compared to the control cell lines. A further increase in the amino acid supplementation has resulted a $17\%$ decrease in specific growth rate and no improvement in maximum viable cell density in the control culture. However, the Bcl-2 cell line exhibited a better growth characteristic in this culture condition compared to that of control cell lines. The higher specific growth rate and maximum viable cell density of the Bcl-2 cell line in medium fortified with serum and MEM EM suggested a more efficient nutrient metabolism compared to that in the control cell line. The low serum and amino acid utilisation rate and the higher cell yield may prove to be important in the development of serum/protein free culture.

Optimization of Culture Medium for Lactosucrose ($^4G-{\beta}$-D-Galactosylsucrose) Production by Sterigmatomyces elviae Mutant Using Statistical Analysis

  • Lee, Jong-Ho;Lim, Jung-Soo;Song, Yoon-Seok;Kang, Seong-Woo;Prak, Chul-Hwan;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1996-2004
    • /
    • 2007
  • In this study, the optimization of culture medium using a Sterigmatomyces elviae mutant was investigated using statistical analysis to increase the cell mass and lactosucrose ($^4G-{\beta}$-D-galactosylsucrose) production. In basal medium, the cell mass and lactosucrose production were 4.12 g/l and 140.91 g/l, respectively. However, because of the low cell mass and lactosucrose production, optimization of culture medium was carried out to increase the cell mass and lactosucrose production. Culture media were optimized by the S. elviae mutant using analysis of variance (ANOVA) and response surface methodology (RSM). Central composite designs using RSM were utilized in this investigation. Quadratic models were obtained for cell mass and lactosucrose production. In the case of cell mass, optimal components of the medium were as follows: sucrose 1.13%, yeast extract 0.99%, bactopeptone 2.96%, and ammonium sulfate 0.40%. The predicted maximum value of cell mass was about 5.20 g/l and its experimental value was 5.08 g/l. In the case of lactosucrose production, optimal components of the medium were as follows: sucrose 0.96%, yeast extract 1.2%, bactopeptone 3.0%, and ammonium sulfate 0.48%. Then, the predicted maximum value of lactosucrose production was about 194.12 g/l and the corresponding experimental value was about 183.78 g/l. Therefore, by culturing using predicted conditions, the real cell mass and lactosucrose production increased to 23.3% and 30.42%, respectively.

Influence of co-culturing muscle satellite cells with preadipocytes on the differentiation of adipocytes and muscle cells isolated from Korean native cattle

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.715-723
    • /
    • 2018
  • The present study was done to investigate the effect of co-culturing muscle satellite cells (MSCs) and intramuscular preadipocytes (IPs) on the differentiation of adipocytes and muscle cells isolated from Korean native cattle. MSCs and IPs were single-cultured in 10% fetal bovine serum/Dulbecco's modified Eagles medium (FBS/DMEM) for 48 h followed by culturing in 5% FBS/DMEM as the growth media. Then, the growth media was replaced by differentiation media composed of 2% FBS/DMEM without any additives for the single- or co-culture of muscle cells and intramuscular adipocytes to induce the differentiation of both cell types. Cell differentiation was measured by morphological investigation and cytosolic enzyme analysis of glycerol-3-phosphate dehydrogenase (GPDH) for the adipocytes and creatine kinase (CK) for the muscle cells. In the morphological test, the presence of muscle cells did not stimulate adipocyte differentiation showing more differentiation of the adipocytes in the single-culture compared to the co-culture condition. However, the differentiation of muscle cells was promoted by adipocytes in the co-culture. The results of the enzymatic analysis were highly associated with the morphological results with a statistically higher GPDH activity (p < 0.05) appearing in the single-culture than in the co-culture, whereas the opposite was true for the CK activity of the muscle cells (p < 0.05). By manipulating in vivo the milieu using a co-culture, we could detect the difference in the rate of cell differentiation and suggest that a co-culture system is a more reliable and precise technique compared to a single-culture. Further studies on various co-culture trials including supplementation of differentiating substances, gene expression analysis, etc. should be done to obtain practical and fundamental data.

EFFECT OF TITANIUM SURFACE ROUGHNESS ON CELL ADHESION OF HUMAN OSTEOBLAST-LIKE CELLS (MG63)

  • Yim Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.261-266
    • /
    • 2004
  • Statement of problem. The effects of surface roughness have not or insufficiently been analyzed on earlier events such as cell adhesion though cell behavior most germane to implant performance is cell adhesion. Purpose. The purpose of this study was to evaluate cell adhesion of osteoblast-like cells (MG63) onto three types of titanium disks with varying roughness using the Elisa assay. Materials and methods. Representative disks from each group (SLA, HA, machined) were subjected to surface analysis and surface roughness was measured by the optical interferometer (Accura 2000, Intekplus Co., Seoul, Korea). Following this, MG63 cells were cultured on the titanium disks and released. Cell adhesion measurements using the Elisa assay were performed specifically at three points: after 24, 48, and 72 hours of culture. Results. Among the 3 types of surface analyzed, the SLA surface was the roughest with a Ra value of $1.114{\mu}m$ followed by HA coated surface and machined surface, consecutively. The optical density values for the SLA surface group was significantly higher than that of the machined and HA coated surface groups following 24 and 48 hours of culture. The cell culture on HA coated surface showed significantly higher values compared to the machined surface following 24, 48 and 72 hours of culture. Conclusion. The results suggest that surface treatment of titanium surfaces enhanced cell adhesion of human osteoblast-like cells (MG63).

Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

  • Kim, Youn-Kyu;Park, Seul-Hyun;Lee, Joo-Hee;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.81-89
    • /
    • 2015
  • In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of long-term human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at $36{\pm}1^{\circ}C$, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

Production of hGM-CSF from Cell Suspension Culture of Transformed Lettuce Using Agrobacterium-mediated Transformation System (Agrobacterium을 이용한 형질전환 상추의 세포 현탁배양으로부터 hGM-CSF의 생산)

  • Kim, Young-Sook;Kim, Mi-Young;Kwon, Tae-Ho;Yang, Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Lettuce (Lactuca sativa) was transformed with Agrobacterium tumefacience LBA4404 containing human granulocyte macrophage colony stimulating factor (hGM-CSF) gene to produce in cell suspension cultures. Cell suspension culture was established using callus from transgenic lettuce plant. Integration of hGM-CSF gene into plant chromosome was confirmed through genomic PCR and Southern blot analysis. In addition, Northern blot analysis indicated the expression of the introduced hGM-CSF gene in transformed lettuce. The recombinant hGM-CSF was expressed in transgenic cell cultures derived from transgenic plants as a yield of about 149.0 $\mu\textrm{g}$/L in culture filtrate, which was determined by ELISA. These results demonstrated that transformed lettuce cell suspension cultures could be used as a production system of therapeutic proteins such as hGM-CSF.

Possible Involvement of Rearranged Proto-oncogene in T Cell Malignancy

  • Lee, Kwang-Ho;Lee, Seung-Gak;Park, Tae-Kyu
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.414-419
    • /
    • 1995
  • The retroviruses carrying ${\nu}-myc$ and ${\nu}-raf$ oncogenes were infected into fetal thymic organ culture (FTOC) to study the molecular mechanisms involved in T cell development. T cell lymphomas in the different stages of T cell development were obtained from this culture system. Interestingly, a few cell lines obtained from this system have a lack of transfected oncogenes, however these cells have the characteristics of transformed cells. In spite of the discrete phenotype of these transformed cell lines, the same pattern of recombination of endogenous c-raf genes was detected from Southern blot analysis. We suggest in this regard that the translocation event of thymocytes, or abnormal promoter activity, can cause lymphomagenesis by way of c-raf.

  • PDF

Enhanced Secretion of Cell Wall Bound Enolase into Culture Medium by the sool-l Mutation of Saccharomyces cerevisiae

  • Kim, Ki-Hyun;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.248-252
    • /
    • 2004
  • In order to identify the protein(s) secreted into culture medium by the sool-l/retl-l mutation of Saccharomyces cerevisiae, proteins from the culture medium of cells grown at permissive (28$^{\circ}C$) and non-permissive temperatures (37$^{\circ}C$), were analyzed. Comparison of protein bands separated by SDS-PAGE identified a prominent band of 47-kDa band from a mutant grown at 37$^{\circ}C$. N-terminal amino acid sequencing of this 47-kDa protein showed high identity with enolases 1 and 2. Western blot analysis revealed that most of the cell wall-bound enolase was released into the culture medium of the mutant grown at 37$^{\circ}C$, some of which were separated as those with lower molecular weights. Our results, presented here, indicate the impairment of cell wall enolase biogenesis and assembly by the sool-l/retl-l mutation of S. cerevisiae.