• Title/Summary/Keyword: cell arrest

Search Result 891, Processing Time 0.024 seconds

Dentatin from Clausena excavata Induces Apoptosis in HepG2 Cells via Mitochondrial Mediated Signaling

  • Andas, A Reenaa Joys;Abdul, Ahmad Bustamam;Rahman, Heshu Sulaiman;Sukari, Mohd Aspollah;Abdelwahab, Siddig Ibrahim;Samad, Nozlena Abdul;Anasamy, Theebaa;Arbab, Ismail Adam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4311-4316
    • /
    • 2015
  • Hepatocellular carcinoma (HCC) is a primary liver cancer with high global incidence and mortality rates. Current candidate drugs to treat HCC remain lacking and those in use possess undesirable side effects. In this investigation, the antiproliferative effects of dentatin (DTN), a natural coumarin, were evaluated on HepG2 cells and DTN's probable preliminary molecular mechanisms in apoptosis induction were further investigated. DTN significantly (p<0.05) suppressed proliferation of HepG2 cells with an $IC_{50}$ value of $12.0{\mu}g/mL$, without affecting human normal liver cells, WRL-68 ($IC_{50}$ > $50{\mu}g/mL$) causing $G_0/G_1$ cell cycle arrest via apoptosis induction. Caspase colorimetric assays showed markedly increased levels of caspase-3 and caspase-9 activities throughout the treatment period. Western blotting of treated HepG2 cells revealed inhibition of $NF-{\kappa}B$ that triggers the mitochondrial-mediated apoptotic signaling pathway by up-regulating cytoplasmic cytochrome c and Bax, and down-regulating Bcl-2 and Bcl-xL. The current findings suggest DTN has the potential to be developed further as an anticancer compound targeting human HCC.

Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified in Breast Cancer Patients from Balochistan

  • Baloch, Abdul Hameed;Khosa, Ahmad Nawaz;Bangulzai, Nasrullah;Shuja, Jamila;Naseeb, Hafiz Khush;Jan, Mohammad;Marghazani, Illahi Bakhsh;Kakar, Masood-ul-Haq;Baloch, Dost Mohammad;Cheema, Abdul Majeed;Ahmad, Jamil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3623-3626
    • /
    • 2016
  • Breast cancer is very common and the leading cause of cancer deaths among women globally. Hereditary cases account for 5-10% of the total burden and CHEK2, which plays crucial role in response to DNA damage to promote cell cycle arrest and repair or induce apoptosis, is considered as a moderate penetrance breast cancer risk gene. Our objective in the current study was to analyze mutations in related to breast cancer. A total of 271 individuals including breast cancer patients and normal subjects were enrolled and all 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) were affected with invasive ductal carcinoma (IDC), 52.1% were diagnosed with grade III tumors and 56.2% and 27.5% with advanced stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified, both novel and not reported elsewhere.

Conversion of C2C12 Myoblast into Adipoblast with Thiazolidinediones - A Possible Basis for Intramuscular Fat Generation in Meat Animals

  • Singh, N.K.;Chae, H.S.;Hwang, I.H.;Yoo, Y.M.;Ahn, C.N.;Lee, H.J.;Park, H.J.;Chung, H.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.432-439
    • /
    • 2007
  • Thiazolidinediones (TZDs) act as potent activators of the adipose differentiation program in established preadipose cell lines. TZD's have also been investigated in diabetic patients and reported to act as PPAR-${\gamma}$ ligands. In this report, the effects of TZDs on the differentiation pathway of myoblasts have been investigated. C2C12 mouse myoblasts were grown in Dulbecco's Modified Eagles medium for 4-5 days until they reached almost 100% confluency. Post-confluent cells (day 0) were further exposed to adipogenic induction medium along with TZDs for 48 hours. Thereafter, cells were exposed only to TZDs every 48 h until day 10. The control was provided with differentiation medium without any treatment. Alterations in the cells during the differentiation programme were analyzed on the basis of fusion index, oil-red-o staining, adipocyte index, adipocyte stain uptake measurement, immuno-histochemistry and western blotting. Exposure of C2C12 mouse myoblasts to TZDs prevented the expression of myosin heavy chain with parallel increase in the expression of C/EBP-${\alpha}$ and PPAR-${\gamma}$ and acquisition of adipocyte morphology, thus abolishing the formation of multinucleated myotubes. TZDs exert their adipogenic effects only in non-terminally differentiated myoblasts; myotubes were insensitive to the compound. Continuous exposure (at least 4-5 doses) to inducers after the growth arrest was essential to provide a sustained environment to the cells converting to fully matured adipoctyes. The results indicate that TZDs specifically converted the differentiation pathway of myoblasts into that of adipoblasts.

Affinity Maturation of an Epidermal Growth Factor Receptor Targeting Human Monoclonal Antibody ER414 by CDR Mutation

  • Chang, Ki-Hwan;Kim, Min-Soo;Hong, Gwang-Won;Seo, Mi-Sun;Shin, Yong-Nam;Kim, Se-Ho
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2012
  • It is well established that blocking the interaction of EGFR with growth factors leads to the arrest of tumor growth, resulting in tumor cell death. ER414 is a human monoclonal antibody (mAb) derived by guided selection of the mouse mAb A13. The ER414 exhibited a ~17-fold lower affinity and, as a result, lower efficacy of inhibition of the EGF-mediated tyrosine phosphorylation of EGFR when compared with mAb A13 and cetuximab. We performed a stepwise in vitro affinity maturation to improve the affinity of ER414. We obtained a 3D model of ER414 to identify the amino acids in the CDRs that needed to be mutated. Clones were selected from the phage library with randomized amino acids in the CDRs and substitution of amino acids in the HCDR3 and LCDR1 of ER414 led to improved affinity. A clone, H3-14, with a ~20-fold increased affinity, was selected from the HCDR3 randomized library. Then three clones, ER2, ER78 and ER79, were selected from the LCDR1 randomized library based on the H3-14 but did not show further increased affinities compared to that of H3-14. Of the three, ER2 was chosen for further characterization due to its better expression than others. We successfully performed affinity maturation of ER414 and obtained antibodies with a similar affinity as cetuximab. And antibody from an affinity maturation inhibits the EGF-mediated tyrosine phosphorylation of EGFR in a manner similar to cetuximab.

NSAID Activated Gene (NAG-1), a Modulator of Tumorigenesis

  • Eling, Thomas E.;Baek, Seung-Joon;Shim, Min-sub;Lee, Chang-Ho
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.649-655
    • /
    • 2006
  • The NSAID activated gene (NAG-1), a member of the TGF-$\beta$ superfamily, is involved in tumor progression and development. The over-expression of NAG-1 in cancer cells results in growth arrest and increase in apoptosis, suggesting that NAG-1 has anti-tumorigenic activity. This conclusion is further supported by results of experiments with transgenic mice that ubiquitously express human NAG-1. These transgenic mice are resistant to the development of intestinal tumors following treatment with azoxymethane or by introduction of a mutant APC gene. In contrast, other data suggest a pro-tumorigenic role for NAG-1, for example, high expression of NAG-1 is frequently observed in tumors. NAG-1 may be like other members of the TGF-$\beta$ superfamily, acting as a tumor suppressor in the early stages, but acting pro-tumorigenic at the later stages of tumor progression. The expression of NAG-1 can be increased by treatment with drugs and chemicals documented to prevent tumor formation and development. Most notable is the increase in NAG-1 expression by the inhibitors of cyclooxygenases that prevent human colorectal cancer development. The regulation of NAG-1 is complex, but these agents act through either p53 or EGR-1 related pathways. In addition, an increase in NAG-1 is observed in inhibition of the AKT/GSK-$3{\beta}$ pathway, suggesting NAG-1 alters cell survival. Thus, NAG-1 expression is regulated by tumor suppressor pathways and appears to modulate tumor progression.

Antioxidant Activity and Its Mechanism of Chelidonium majus Extract (백굴채 추출물의 항산화 활성과 기전)

  • Heo, Jee In;Kim, Jeong Hyeon;Lee, Jeong Min;Lim, Soon Sung;Kim, Sung Chan;Park, Jae Bong;Kim, Jae Bong;Lee, Jae Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.2
    • /
    • pp.136-141
    • /
    • 2013
  • Chelidonium majus (CM) contains several isoquinoline alkaloids that have been reported to have various biological activities such as anti-inflammatory, antimicrobial, antioxidant, immune-modulatory, and antitumoral. It has been reported that the extract of CM had an antioxidant potential, however the mechanism has not been verified. In this study, we found that CM extract activated FOXO3a. FOXO3a is a transcription factor that involved in various biological processes such as cell cycle arrest, apoptosis, DNA repair, and ROS detoxification. Transcriptional activities of FOXO3a were regulated by post-translational modifications including phosphorylation, acetylation, and ubiquitination. Protein level of FOXO3a was increased by CM extract. Promoter activities of FOXO-transcriptional target genes such as MnSOD, p27 and GADD45 were activated by CM extract in a dose dependent manner. In addition, protein level of MnSOD, major antioxidant enzyme, was increased by CM extract. Thereby ROS level was decreased by CM in old HEF cells. These results suggest that CM extract has an antioxidant activity through FOXO activation.

Mechanism of Inhibition of HepG2 Cell Proliferation by a Glycoprotein from Hizikia fusiformis (톳(Hizikia fusiformis) 당단백질에 의한 HepG2 세포 증식 억제기전)

  • Ryu, Jina;Hwang, Hye-Jung;Kim, In-Hye;Nam, Taek-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2012
  • Hizikia fusiformis, a brown alga that is widely consumed in Korea, Japan, and China, possesses a number of potentially beneficial compounds, including antioxidants and anticoagulants. However, the molecular mechanisms of H. fusiformis in hepatoma cells have not been elucidated. This study investigated the antiproliferative effect and mechanism of action of a glycoprotein from H. fusiformis (HFGP) in HepG2 human hepatoma cells. In an MTS assay, 25 ${\mu}g/mL$ HFGP inhibited the proliferation of HepG2 cells by $52.36{\pm}2.37%$. HFGP caused the dose-dependent growth inhibition of HepG2 cells by inducing apoptosis and a sub-G1 phase arrest. The antiproliferative activity of HFGP was confirmed based on the expression of several apoptosis-related proteins, which was assessed by Western blot analysis. The expressions of Fas, Fas-associated death domain protein, Bax, and Bad was significantly up-regulated in HFGP-treated cells, and HFGP induced the translocation of Bax to mitochondria and the release of cytochrome c into the cytosol. Therefore, HFGP might be useful in the treatment of liver cancer.

Downstream Networking of $Zap70$ in Meiotic Cell Cycle of the Mouse Oocytes

  • Kim, Hyun-Jung;Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.16 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • Previously, we found that $Zap70$ (Zeta-chain-associated protein kinase) expressed in the mouse oocytes and played significant role in completion of meiosis specifically at MI-MII (metaphase I-II) transition. Microinjection of $Zap70$ dsRNA into the cytoplasm of germinal vesicle oocyte resulted in MI arrest, and exhibited abnormalities in their spindles and chromosome configurations. The purpose of this study was to determine the mechanisms of action of $Zap70$ in oocyte maturation by evaluating downstream signal networking after $Zap70$ RNAi (RNA interference). The probe hybridization and data analysis were used by Affymetrix Gene Chip Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Total 1,152 genes were up (n=366) and down (n=786) regulated after $Zap70$ RNAi. Among those genes changed, we confirmed the expressional changes of the genes involved in the regulation of actin cytoskeleton and MAPK (mitogen-activated protein kinase) signaling pathway, since the phenotypes of $Zap70$ RNAi in oocytes were found in the changes in the chromosome separation and spindle structures. We confirmed the changes in gene expression in the actin skeletal system as well as in the MAPK signaling pathway, and concluded that these changes are main cause of the aberrant chromosome arrangement and abnormal spindles after $Zap70$ RNAi.

Purification and refolding of the recombinant subunit B protein of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin

  • Jeon, Yong-Seon;Seo, Sung-Chan;Kwon, Jin-Hee;Ko, Sun-Young;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.343-354
    • /
    • 2008
  • Purpose: Aggregatibacter actinomycetemcomitans is associated with localized aggressive periodontitis. It produces cytolethal distending toxin (CDT), which induces cell cycle arrest in the G2/M phase. The CDT holotoxin is composed of CdtA, CdtB, and CdtC. CdtB has structural homology to human DNase I and is an active component of the CDT complex acting as a DNase. In particular, the pattern homology seen in the CdtB subunit has been associated with specific DNase I residues involved in enzyme catalysis, DNA binding, and metal ion binding. So, to study the functions and regulation of recombinant CdtB, we made up a quantity of functional recombinant CdtB and tested it in relation to the metal ion effect. Materials and Methods: We constructed the pET28a-cdtB plasmid from A. actinomycetemcomitans Y4 by genomic DNA PCR and expressed it in the BL21 (DE3) Escherichia coli system. We obtained the functional recombinant CdtB by the refolding system using the dialysis method and then analyzed the DNase activity and investigated the metal ion effect from plasmid digestion. Results: The recombinant CdtB subunit was expressed as the inclusion bodies. We were able to obtain functional recombinant CdtB subunit using refolding system. We confirmed that our refolded recombinant CdtB had DNase activity and was influenced by the metal ions $Mg^{2+}$ and $Ca^{2+}$. Conclusion: We suggest that the factors influencing recombinant CdtB may contribute to CDT associated diseases, such as periodontitis, endocarditic, meningitis, and osteomyelitis.

Cortex Mori Extract Induces Cancer Cell Apoptosis Through Inhibition of Microtubule Assembly

  • Hwang, Pyoung-Han;Nam, Sang-Yun;Yi, Ho-Keun;Lee, Jung-Chang;Kim, Jae-Cheol;Song, Chang-Ho;Park, Jin-Woo;Lee, Dae-Yeol;Kim, Jung-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.191-196
    • /
    • 2002
  • The water extract from the root bark of Cortex Mori (CM, Morus alba L.: Sangbaikpi), a mulberry tree, has been known in Chinese traditional medicine to have antiphlogistic, diuretic, and expectorant properties. In this study, the cytotoxicity of CM against tumor cells and its mechanism was examined . CM exhibited cytotoxic activity on K-562, B38O human leukemia cells and B16 mouse melanoma cells at concentrations of > 1 mg/ml. A DNA fragmentation, PARP cleavage, and nuclear condensation assay showed that those cells exposed to CM underwent apoptosis. The water extract of Scutellarie Radix (SR) was used as a negative control and showed no cytotoxicity in those cells. The flow cytometric profiles of the CM-treated cells were also indicative of apoptosis. However, they did not appear to exert the G1 arrest, which is observed in other tubulin inhibitor agents such as vincristine, taxol. The protein-binding test using Biacore and a microtubule assembly-disassembly assay provided evidence showing that CM bound to the tubulins resulting in 3 markets inhibition of the assembly, but not the disassembly of microtubules. The possible nonspecific effect of the CM extract could be excluded due to the results using SR, which did not affect the assembly process. Overall, the water extract of CM induces apoptosis of tumor cells by inhibiting microtubule assembly.