• Title/Summary/Keyword: cdk

Search Result 340, Processing Time 0.024 seconds

Expression of Cell Cycle Related Genes in HL60 Cells Undergoing Apoptosis by X-irradiation (HL60 세포주에서 방사선 조사에 의한 Apoptosis와 세포 주기 관련 유전자의 발현 변화)

  • Kim, Jin-Hee;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.377-388
    • /
    • 1998
  • Purpose : To evaluate changes in expression of cell cycle related genes during apoptosis induced in HL60 cells by X-irradiation to understand molecular biologic aspects in mechanism of radiation therapy. Material and Methods : HL-60 cell line (promyelocytic leukemia cell line) was grown in culture media and irradiated with 8 Gr by linear accelerator (6 MV X-ray). At various times after irradiation, ranging from 3 to 48 hours were analyzed apoptotic DNA fragmentation assay for apoptosis and by western blot analysis and semi-quantitative RT-PCR for expression of cell cycle related genes (cyclin A, cyclin B, cyclin C, cyclin Dl, cyclin E, cdc2, CDK2, CDK4, $p16^{INK4a}$, $p21^{WAF1}$, $p27^{KIP1}$, E2F, PCNA and Rb). Results : X-irradiation (8 Gy) induced apoptosis in HL-60 cell line. Cycline A protein increased after reaching its peak 48 h after radiation delivery and cyclin E, E2F, CDK2 and RB protein increased then decreased after radiation. Radiation induced up-regulation of the expression of E2F is due to mostly increase of Phosphorylated retinoblastoma proteins (ppRb). Cyclin Dl, PCNA, CDC2, CDK4 and $p16^{INK4a}$ protein underwent no significant change at any times after irradiation. There was not detected $p21^{WAF1}$ and $p27^{KIP1}$ protein. Cyclin A, B, C mRNA decreased immediately after radiation and then increased at 12 h after radiation. Cyclin Dl mRNA increased immediately and then decreased at 48 h after radiation. After radiation, cyclin E mRNA decreased with the lapse of time. CDK2 mRNA decreased at 3h and increased at eh after radiation. CDK4 mRNA rapidly increased at 6 to 12 h after radiation. There was no change of expression of $p16^{INK4a}$ and not detected in expressin of $p21^{WAF1}$ and $p27^{KIP1}$ mRNA. Conclusion : We suggest that entry into S phase may contribute to apoptosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced auoptosis of HL60 cells and tosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of PRb protein are related with radiation induced apoptosis of HL60 cells and this may be associated with induction of E2F and cyclinE/CDK2. These results support that $p21^{WAF1}$ and $p27^{KIP1}$ are not related with radiation induced-apoptosis.

  • PDF

CDK2AP1, a Cyclin-Dependent Kinase 2-Associated Protein, Interacts with Kinesin-1 through Kinesin Superfamily Protein 5A (KIF5A) (Cyclin-dependent kinase 1 결합 단백질 CDK2AP1은 kinesin superfamily protein 5A (KIF5A)을 매개로 Kinesin-1와 결합)

  • Myoung Hun Kim;Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.531-537
    • /
    • 2023
  • Intracellular and axonal transport is mediated by microtubule-dependent motor proteins, such as kinesins and cytoplasmic dynein. Kinesin moves along the microtubule to the positive end of the microtubule, while dynein moves to the negative end of the microtubule. Kinesin-1 was first identified as a kinesin superfamily protein (KIF) that functions in the intracellular transport of various cargoes, including organelles, neurotransmitter receptors, and mRNA-protein complexes, through interactions between the carboxyl (C)-terminal domain and the cargo. It interacts with other cargoes, but the adapter/scaffold proteins that mediate between kinesin-1 and the cargo have yet to be fully identified. In this study, a yeast two-hybrid screen was used to identify adapter proteins that interact with the C-terminal region of KIF5A. We found an association between the C-terminal region of KIF5A and the cyclin-dependent kinase 2-associated protein 1 (CDK2AP1), originally identified in malignant hamster oral keratinocytes. CDK2AP1 bound to the C-terminal region of KIF5A and did not interact with KIF3A (the motor of kinesin-2), KIF5B, KIF5C, and kinesin light chain 1 (KLC1). The C-terminal region of CDK2AP1 is essential for its interaction with KIF5A. When co-expressed in HEK-293T cells, CDK2AP1 and kinesin-1 co-immunoprecipitated and co-localized in the cells. These results suggest that the KIF5A-CDK2AP1 interaction serves as an adapter protein connecting kinesin-1 and the cargo when kinesin-1 transports cargo in cells.

Involvement of Cdk Inhibitor p21(WIP1/CIP1) in G2/M Arrest of Human Myeloid Leukemia U937 Cells by N-Methyl-N'-Nitro-N-Nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine에 의한 인체백혈병세포의 G2/M arrest 유발에서 Cdk inhibitor p21(WIP1/CIP1)의 관련성)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, to elucidate the further mechanisms of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced growth arrest, we investigated the effect of MNNG on cell cycle and proliferation in U937 cells, a p53-null human myeloid leukemia cell line. It was found that MNNG causes an arrest at the G2/M phase of the cell cycle and induces apoptosis, which is closely correlated to inhibition of cyclin B1 and cyelin-dependent kinase (Cdk) 2-associated kinase activities. MNNG treatment in. creased protein and mRNA levels of the Cdk inhibitor p21(WAF1/CIP1), and activated the reporter construct of a p21 promoter. By using p21 promoter deletion constructs, the MNNG-responsive element was mapped to a region between 113 and 61 relative to the transcription start site. These data indicate that in U937 cells MNNG can circumvent the loss of wild-type p53 function and induce critical downstream regulatory events leading to transcriptional activation of p21. Present results indicate that the p53-independent up-regulation of p21 by MNNG is likely responsible for the inhibition of cyclin/Cdk complex kinase activity rather than the down-regulation of cyclins and Cdks expression. These novel phenomena have not been previously described and provide important new insights into the possible biological effects of MNNG.

Significance of Cell Cycle and Checkpoint Cnotrol (세포주기조절에 관한 최근 연구)

  • 최영현;최혜정
    • Journal of Life Science
    • /
    • v.11 no.4
    • /
    • pp.362-370
    • /
    • 2001
  • Regulation of cell proliferation is a complex process involving the regulated expression and /or modification of discrete gene products. which control transition between different stages of the cycle. The purpose of this short review is to provide an overview of somatic cell cycle events and their controls. Cycline have appeared as major positive regulators in this network, because their association to the cyclin-dependent kinases(Cdks) allows the subsequent activation on the Cdk/cyclin complexes and their catalatic activity. In mammalian cells, early to mid G1 progression and late G1 progression leading to S phase entry are directed by D-type cyclins-Cdk4, 6 and cyclin E-Cdk 2 both of which can phosphorylate the retinoblastoma protein (pRB). pRB is a transcriptional repressor which, in its unphosphorylated state, binds to members of the E2F transcription factor family and blocks E2F-dependent transcription of genes controlling the G1 to S phase transition an subsequent DNA synthesis. Cyclin A is produced in late G1 and expressed during S and G2 phae, and expression of B-type cyclins is typically maximal during the G2 to M phase transition and it controls the passage through M phase. They primarily associate with the activate Cdk2, and Cdc2, respectively. On the other hand, the Cdk inhibitors negatively control the activity of C아/cyclin complex by coordinating internal and/or external signals and impending proliferation at several key checkpoints. These current and further findings will provide novel approaches to understanding and treating major diseases.

  • PDF

Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells

  • Long, Xiang-E.;Gong, Zhao-Hui;Pan, Lin;Zhong, Zhi-Wei;Le, Yan-Ping;Liu, Qiong;Guo, Jun-Ming;Zhong, Jiu-Chang
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • Cyclin-dependent kinase 2 (CDK2) is a member of serine/threonine protein kinases, which initiates the principal transitions of the eukaryotic cell cycle and is a promising target for cancer therapy. The present study was designed to inhibit cdk2 gene expression to induce cell cycle arrest and cell proliferation suppression. Here, we constructed a series of RNA interference (RNAi) plasmids which can successfully express small interference RNA (siRNA) in the transfected human cells. The results showed that the RNAi plasmids containing the coding sequences for siRNAs down-regulated the cdk2 gene expression in human cancer cells at the mRNA and the protein levels. Furthermore, we found that the cell cycle was arrested at G0G1 phases and the cell proliferation was inhibited by different siRNAs. These results demonstrate that suppression of CDK2 activity by RNAi may be an effective strategy for gene therapy in human cancers.

Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells (택란 메탄올 추출물에 의한 인체 폐암 세포주 A549의 G1 arrest 유발)

  • Park, Hyun-Jin;Jin, Soojung;Oh, You Na;Yun, Seung-Geun;Lee, Ji-Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1109-1117
    • /
    • 2013
  • Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells Lycopus lucidus, a herbaceous perennial, is used as a traditional remedy in East Asia, including China and Korea. It has been reported that L. lucidus has anti-allergic effects, inhibitory effects on cholesterol acyltransferase in high glucose-induced vascular inflammation, and anti-proliferative effects in human breast cancer cells. However, the molecular mechanisms of the anti-cancer effects of L. lucidus have not yet been fully determined. In this study, we evaluated the anti-cancer effect and the mechanism of action of L. lucidus in human lung adenocarcinoma A549 cells using methanol extracts of L. lucidus (MELL). MELL treatment showed cytotoxic activity in a dose-dependent manner and induced G1 arrest in A549 cells. The induction of G1 arrest by MELL was associated with the up-regulation of phospho-CHK2 and the down-regulation of Cdc25A phosphatase. In addition, MELL treatment induced decreased expression of G1/S transition-related proteins, including CDK2, CDK4, CDK6, cyclin D1 and cyclin E. MELL also regulated the mRNA expression of CDK2 and cyclin E. On the other hand, the expression of p53 and the cyclin-dependent kinase inhibitor p21 was not induced by MELL. Collectively, these results suggest that MELL may exert an anti-cancer effect by cell cycle arrest at G1 phase through the ATM/CHK2/Cdc25A/CDK2 pathway in A549 cells.

Increase of Cdk5 and p35 during Retinoic Acid-Induced Neuronal Differentiation of SK-N-BE(2)C cells

  • Lee, Jong-Hee;Kim, Kyung-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.46-46
    • /
    • 2002
  • Cdk5, a neuronal Cdc2-like kinase, exhibits a variety of functions in neuronal differentiation and neurocytoskeleton dynamics as well as neuronal degeneration and cell death. However, its role in retinoic acid (RA)-induced differentiation has not been reported yet. We newly found that RA treatment of SK-N-BE(2)C, human neuroblastoma, increased expression of Cdk5 concomitantly with a neuronal specific activator, p35.(omitted)

  • PDF

Cytotoxic Activities of 6-Arylamino-7-halo-5,8-quinolinediones against Human Tumor Cell Lines

  • Ryu, Chung-Kyu;Kang, Hye-Yung;Yi, Yu-Jini;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.42-45
    • /
    • 2000
  • 6-Arylamino-7-halo-5,8-quinolinediones (4a-4k, 5a-5b) were tested for in vitro cytotoxicity against human solid tumor cell lines such as A 549 (non-small cell lung). SK-OV-3 (ovarian), SK-MEL-2 (melanoma), HCT-15 (colon) and XF 498 (CNS) by SRB assay. The arylamino-7-chloro-5,8-quinolinediones 4 were also evaluated for cyclin-dependent kinase (CDK2 and CDK4) inhibitory effect. Among them, the 5,8-quinolinediones 4a and 5a with 7-(4-fluorophenyl) amino group were found to be potent cytotoxic against HCT 15, SKOV-3 and XF 498, and the compounds 4f and 4i showed inhibitory activities for the CDK4.

  • PDF

P25: A hidden target for AD therapeutic.

  • Ha, Il-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.04a
    • /
    • pp.95-105
    • /
    • 2006
  • Alzheimer's disease (AD) is an irreversible, progressive brain disorder that is characterized by dementia. Amounts of p25 and cdk5 kinase activity are specifically upregulated in AD patient's brain samples. Considerable evidence now points importance of p25/cdk5 in generation of A$\beta$ peptides and hyperphosphorylation of tau linking amyloid plaques and neurofibrillary tangles, two major pathological hallmarks of AD. We demonstrated that P25/CDK5 phosphorylates BACE1, the first step protease to produce A$\beta$. P25/CDK5 inhibitors to reduce BACE1 phosphorylation and the secretion of A$\beta$ are screened through in silica, in vitro, and cell-based assays. Out of 4.3 million chemicals we finally selected two compounds to have IC50 of 10 microM in cell-based assays. The inhibitors block Tau phosphrorylation as well as BACE1 phosphorylation. In conclusion P25 should be one of the best targets for AD therapeutics.

  • PDF

A Simple and Efficient Docking Method to the Cyclin-Dependent Kinase 2

  • Park, Kwang-Su;Kim, Jin-Young;Chong, You-Hoon;Choo, Hyun-Ah
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.211-219
    • /
    • 2007
  • The subtle but significant differences and thereby the lack of consensus in active site structures among the crystal structures of cyclin-dependent kinase 2 (CDK2) has hampered structure-based drug design. In this study, we devised a simple but effective ‘mutation, pharmacophore-guided docking, followed by mutation' strategy to generate an “average” CDK2 structure, which was used for ligand docking study to successfully reproduce 30 out of 32 X-ray ligand positions within 2.0 A of heavy atom RMSD. This novel docking method was applied for structure-based 3D QSAR with CoMSIA study of a series of structurally related ligands, which showed a good discrimination between CDK2 binders and nonbinders.