• Title/Summary/Keyword: cavity flow

Search Result 901, Processing Time 0.024 seconds

Effect of Tip Gap Height on Heat/Mass Transfer over a Cavity Squealer Tip (팁간극높이가 전면스퀼러팁 표면의 열전달 특성에 미치는 영향)

  • Kang, Dong Bum;Moon, Hyun Suk;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • The effect of tip gap height on heat/mass transfer characteristics on the floor of cavity squealer tip has been investigated in a turbine cascade for power generation by employing the naphthalene sublimation technique. The squealer rim height is chosen to be an optimal one of $h_{st}/c$ = 5.51% for the tip gap height-to-chord ratios of h/c = 1.0, 2.0, 3.0 and 4.0%. The results show that heat transfer on the cavity floor is strongly dependent upon the behavior of the cavity flow falling down onto the floor. For lower h/c, the floor heat transfer is influenced by the tip leakage flow falling down along the inner face of the suction-side squealer, whereas the floor heat transfer for higher h/c is augmented mainly due to the impingement of leakage flow on the floor near the leading edge. Compared to the plane tip surface heat transfer, the cavity floor heat transfer is less influenced by h/c. For h/c = 1.0%, the average thermal load is as low as a half of the plane tip surface one, and the difference in the thermal load between the two cases tends to decrease with increasing h/c.

Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut (2차원 대칭 스트럿 주위의 초월 공동 유동 문제의 해석)

  • Y.G.,Kim;C.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.15-26
    • /
    • 1990
  • This paper describes a potential-baoed panel method formulated for the analysis cf a supercavitating two-dimensional symmetri strut. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type, With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lifting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged.

  • PDF

Experimental study of heat transfer in the surrounding for bubble attached at the upper cooled surface of square cavity using the Thermo-sensitive Liquid-crystal Tracer (열감응액정을 이용한 사각공동내의 상단냉각평판에 형성된 기포 주위의 열전달현상 구명)

  • Kwon, Gi-Han;Eom, Yong-Kyoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.509-515
    • /
    • 2001
  • In a square cavity, the flow phenomena in the surrounding of the bubble attached at the upper cooled solid wall were studied by using a thermo-sensitive liquid-crystal tracer and image processing techniques. This method offers the advantage of measuring the entire flow field in a selected plane within the fluid at a given instant of time in contrast to point by point method like T/C. Quantitative data of the temperature were obtained by applying a colour-image-processing to the. visualized image. As the growing of a bubble, In a bubble size appears the flow phenomena which the direction of flow is reversed in the entire temperature and flow field. The observed phenomena are described with regard to thermocapillary convection.

  • PDF

Staging Flow Analysis with forward Ejector (전방 분출이 있는 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.145-150
    • /
    • 2004
  • In this study the numerical analysis on staging flow with forward ejector is conducted. The forward ejector plays a vital role in staging, which jets out from aftbody. This staging environment needs careful flow analysis for securing staging safety Present study investigates the steady inviscid staging flow phenomena with variation of separation distance. The performance index is forebody base pressure coefficients. The three dominant flow phenomena are observed according to separation distance which could be told as impinging stage, cavity vortex dominancy stage, and pure base flow characteristics stage. Impinging stage shows high thrust for forebody as one might think. However, important point is that cavity vortex dominancy stage can be more favorable for separation than impinging stage as one simply think in certain separation distance.

  • PDF

Flow Visualization Using Thin Oil-Film in the Flow Control of Shock Wave/Turbulent Boundary-Layer Interactions (충격파와 경계층 간섭유동 제어에서 오일막을 이용한 유동가시화)

  • Lee Yeol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-120
    • /
    • 2002
  • An experimental research has been carried out for flow control of the shock wave/turbulent boundary-layer interaction utilizing aeroelastic mesoflaps. Various shapes and thicknesses of the mesoflap are tested to achieve different deflections of the flap, and ail the results are compared to the solid-wall reference case without flow-control mechanism. Quantitative variation of skin friction has been measured downstream of the interactions using the laser interferometer skin friction meter, and qualitative skin friction distribution has been obtained by observing the interference fringe pattern on the oil-film surface. A strong spanwise variation in the fringe patterns with a narrow region of separation near the centerline is noticed to form behind the shock structure, which phenomenon is presumed partially related to three-dimensional flow structures associated with both the sidewalls and the bottom test surface. The effect of the shape of the cavity is also observed and it is noticed that the shape of the cavity is not negligible.

  • PDF

Characteristics of Flame-holding in a Scramjet Combustor with a Cavity

  • Tanaka, Hideyasu;Takahashi, Shuhei;Uriuda, Yoshitaka;Wakai, Kazunori;Tsue, Mitsuhiro;Kono, Michitaka;Ujll, Yasushige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.55-61
    • /
    • 2004
  • Numerical simulations were conducted in a rectangular scramjet combustor with a cavity and/or a step in order to investigate their performances for flame-holding. Flow structures and OH radical profiles in the cavity and the step were calculated. The calculated results showed that the cavity generated a larger recirculation zone than the step that had the same depth. Additionally, the combustor with a cavity could make a large low-velocity area than the combustor with a step. The cavity performance was determined by its depth and length. The cavities with too large or too short length did not work effectively, and a certain aspect ratio showed high performance for flame-holding. There was a minimal depth under which the cavity did not work as flame-holder. The fuel injections upstream the cavity and inside the cavity were also tested to investigate the effects on the cavity performance. The result showed that the fuel injection inside the cavity reduced reaction areas and residence time. Therefore, the upstream injection was preferable to the inside injection.

  • PDF

Experimental Study on Supersonic Combustion with Parallel Fuel Injection Method in the Cavity (공동 내부로의 평행분사방법을 이용한 초음속 연소의 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Hydrogen Fuel is injected in the cavity parallel with air(or nitrogen) flow. The equivalence ratios in this study are 0.132 and 0.447. Experimental measurements use OH-PLIF near the cavity and pressures in the combustor. For parallel fuel injection case, direct fuel add into cavity leads to increase of cavity pressure. And Flame exists just near the bottom wall for low equivalent ratio. There is no flame in the cavity because of no mixing in it. Compared to the inclined fuel injection, ignition delay length is longer for low equivalence ratio in both case. OH distribution is not a single line but a repeatable fluctuation flame structure by turbulence. Pressure distributions have nothing to do with the fuel injection position.

  • PDF

Experimental Study on Supersonic Combustion with Parallel Fuel Injection Method in the Cavity (공동 내부로의 평행분사방법을 이용한 초음속 연소의 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrn, Sean;Houwing, A.F.P
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.31-36
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Hydrogen Fuel is injected in the cavity parallel with air(or nitrogen fuel) flow. The equivalence ratios in this study are 0.132 and 0.447. Experimental measurements use OH-PLIF near the cavity and pressures in the combustor. For parallel fuel injection case, direct fuel add into cavity leads to increase of cavity pressure. And Flame exists just near the bottom wall for low equivalent ratio. There is no flame in the cavity because of no mixing in it. Compared to the inclined fuel injection, ignition delay length is longer for low equivalence ratio in both case. OH distribution is not a single line but a repeatable fluctuation flame structure by turbulence. Pressure distributions have nothing to do with the fuel injection position.

  • PDF

A study on the runner system for filling balance in multi-cavity injection molds (다수 캐비티 사출금형에서의 균형 충전을 위한 러너 시스템 연구)

  • Jeon, Kang-Il;Noh, Seung-Kyu;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1581-1588
    • /
    • 2011
  • In this study, flow characteristics in a multi-cavity injection molding process were investigated. One of main problems occurred in the multi-cavity molding is a flow imbalance among cavities since it affects physical properties and quality of products. Charge imbalance is caused by the uneven shear stress. Therefore, changes in viscosity affect the physical properties of resin and injection conditions differ in the filling imbalance phenomenon. Through, this study focus on experimental studies of flow imbalance for PC and PP resin occurring in a balanced delivery system. Experimental results were compared with CAE results. By experimental and CAE analysis, main cause for the flow imbalance is temperature distribution in cross section of runner. New runner system with a simple change of runner shape was suggested to avoid the flow imbalance. A series of simulation to confirm feasibility of Volume Runner's effects was conducted using injection molding CAE.

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF