• Title/Summary/Keyword: cavity depth

Search Result 281, Processing Time 0.026 seconds

Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy (음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성)

  • Cho, H.K.;Kang, W.S.;Seok, J.K.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Optimum Implant Depth and Its Determination in Implanted Vertical Cavity Surface Emitting Lasers (임플랜트된 표면 방출형 레이저에서 최적 임플랜트 깊이와 최적 깊이 판정 방법)

  • 안세환;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.45-50
    • /
    • 2004
  • The characteristics and reliability of implanted VCSELs are greatly influenced by the thickness of the semi-insulating layer made by ion implantation for the current confinement. We propose a simple and purely electrical method of estimating the optimum implant depth, and find that the implant front should be located 2-DBR periods above the 1 - λ cavity in order to obtain simultaneously the low threshold current and high reliability.

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

A Study on the Reduction of Supersonic Cavity Pressure Oscillations Using a Sub-Cavity System (보조공동을 이용한 초음속 공동내부의 압력진동 저감에 관한 연구)

  • Shin, Choon-Sik;Jeong, June-Chang;Suryan, Abhilash;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • Numerical computations were carried out to analyze the effect of a sub-cavity at several inlet Mach numbers on the control of cavity-induced pressure oscillations in two-dimensional supersonic flow. The present passive control method, the sub-cavity applied to the front wall of a square cavity, was studied for the inlet Mach numbers of 1.50, 1.83 and 2.50. The results show that the sub-cavity is effective in reducing the oscillations, and a resultant amount of the reduction depended on the inlet Mach number, the length of flat plate, and the depth of sub-cavity used as an oscillation suppressor.

Numerical Analysis of Supersonic Combustion Flows according to Fuel Injection Positions near the Cavity (공동주위 분사위치에 따른 초음속 연소 유동해석)

  • Jeong Eunju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.368-373
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the mixing enhancement combustion phenomena according to fuel injector location near the cavity in supersonic flow. Fuel injector location changes the actual length to depth ratio of the cavity in the supersonic combustor. Therefore fuel injector location near the cavity effects different fuel/air mixing efficiency and combustion efficiency.

  • PDF

Distortion of the Bottom Surface in Micro Cavity Machining Using MEDM (미세 캐비티 방전 가공에서 바닥면 형상 왜곡)

  • 임종훈;류시형;제성욱;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.191-197
    • /
    • 2003
  • As mechanical components are miniaturized, the demand on micro die and mold is increasing. Micro mechanical components usually have high hardness and good conductivity. So micro electrical discharge machining (MEDM) is an effective way to machine those components. In micro cavity fabrication using MEDM, it is observed that the bottom surface of cavity is distorted. Electric charges tend to be concentrated at the sharp edge. At the center of the bottom surface, debris can not be drawn off easily. These two phenomena make the bottom surface of the electrode and workpiece distort. As machining depth increases, the distorted shape of electrode approaches hemisphere. This process is affected by capacitance and the size of electrode. By using a smaller electrode than the desired cavity size and appropriate tool movement, bottom shape distortion can be prevented.

Shear Layer and Wave Structure Over Partially Spanning Cavities

  • Das, Rajarshi;Kim, Heuy Dong;Kurian, Job
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.46-54
    • /
    • 2013
  • Study of the wave structure and shear layer in the vicinity of a wall mounted cavity is done by time averaged colour schlieren and time resolved instantaneous shadowgraph technique in an M=1.7 flowfield. Effect of change of cavity width on flow structure is investigated by using constant length to depth (L/D) ratio cavity models with varying length to width (L/W) ratio of 0.83 to 4. The time averaged shock wave structure was observed to change with change in cavity width. Dependence of the shock angle at the leading edge on the shear layer width is also evident from the images obtained. Unsteadiness in the flow field in terms of shear layer dynamics and quasi steady nature of shock waves was evident from the images obtained during instantaneous shadowgraph experiments. Apart from the leading and trailing edge shocks, several other waves and flow features were observed. These flow features and the associated physical phenomena are discussed in details and presented in the paper.

Application of Ventilated Cavity for Enhancing Insulation and Preventing Condensation of Curtain-wall System (커튼월의 단열 향상 및 결로 방지를 위한 통기구조 적용방안 연구)

  • Lee, Sunwoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Curtain-wall systems have been widely applied to buildings because of their lightweight and constructability characteristics. However, as curtain-wall systems include many building materials, vapor barriers can become damaged and condensation can occur. Due to the material properties of stone curtain-walls, the external appearance and structure of a building could be damaged and the insulating performance of the curtain-wall could be worse. Natural ventilation using an air cavity in a curtain-wall is expected to be effective for the prevention of condensation in inner walls and for the reduction of building cooling energy use in the summer. The purpose of this experimental study is to analyze the influence of a ventilated cavity on the insulating performance of a curtain-wall and the ventilated cavity depth and ratio of top opening needed to prevent condensation in a curtain-wall.

Aeroacoustic Characteristics of Cavity Resonance on Very Low Subsonic Flows (저아음속 유동에 놓여진 개방형 공동의 공력소음 특성)

  • Koh, Sung-Ryong;Moon, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1921-1926
    • /
    • 2004
  • The tone generation mechanism and aeroacoustic characteristics have been investigated for flow over open cavities using direct acoustic numerical simulations. Physically the tone generation mechanism of open cavity is more complicated when flow instabilities are excited by the correlation effects of flow parameters. From non-dimensional parameter studies in very low Mach number range, it is shown that characteristics of cavity resonance inherently involve typical acoustic pattern at each discrete tone frequency, and especially in laminar flow the fundamental tone frequency is determined within flow instability criterion of laminar shear layer as well as cavity geometry, length to depth ratio.

  • PDF

A structural analysis of deep depth injection mold to investigate the cause of crack (깊이가 깊은 사출금형의 크랙 원인 파악을 위한 강도해석)

  • Choi, S.H.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.297-300
    • /
    • 2008
  • High pressure is involved during injection molding operation specially packing phase. Cracks in the mold are often occurred by high cavity pressure. In this study, structural analysis of mold has been performed using commercial softwares, Abaqus and Ansys, to investigate cause of crack in the injection mold. Structural analysis contains four cases: stress distribution according to the cavity pressure, stress concentration according to the boundary conditions, stress concentration for inter-locking design of mold, and stress concentration for distributed cavity pressure. Through this study it was observed that the locations of stress concentrations were coincident with locations of crack. Robust mold design is being required to withstand high cavity pressure.

  • PDF