• Title/Summary/Keyword: cause of defects

Search Result 622, Processing Time 0.029 seconds

Integration of Multi-scale CAM and Attention for Weakly Supervised Defects Localization on Surface Defective Apple

  • Nguyen Bui Ngoc Han;Ju Hwan Lee;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.45-59
    • /
    • 2023
  • Weakly supervised object localization (WSOL) is a task of localizing an object in an image using only image-level labels. Previous studies have followed the conventional class activation mapping (CAM) pipeline. However, we reveal the current CAM approach suffers from problems which cause original CAM could not capture the complete defects features. This work utilizes a convolutional neural network (CNN) pretrained on image-level labels to generate class activation maps in a multi-scale manner to highlight discriminative regions. Additionally, a vision transformer (ViT) pretrained was treated to produce multi-head attention maps as an auxiliary detector. By integrating the CNN-based CAMs and attention maps, our approach localizes defective regions without requiring bounding box or pixel-level supervision during training. We evaluate our approach on a dataset of apple images with only image-level labels of defect categories. Experiments demonstrate our proposed method aligns with several Object Detection models performance, hold a promise for improving localization.

Study on the Utilization of HBD in the Conventional Speed-up Lines (일반철도 고속화 구간에서 차축온도검지장치 활용방안에 대한 연구)

  • Choe, Gwon-Hui;Kim, Yu-Ho;Baek, Seung-Mun;Bing, Gun-Seop
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.233-243
    • /
    • 2012
  • HBD(Hot Box Detector) is a device to monitor temperature rises to inappropriate lubricant use or mechanical defects. If a train operates without recognizing such an effect, it might result in bearing overheating due to defects and cause a dangerous situation that it could derail a train owing to the damage of axles. Now for the Gyeongbu HSL at 300km/h, the laws related to monitoring overheated axle bearings are notified in the Railway Safety Law and the Railway Construction Law. But in case of the conventional speed-up lines that a train operates at 180 to 230 km/h, the revised bill of relevant standards is ongoing. Therefore in this paper we present references and reviews investigated in order to use the optimal HBD in the conventional speed-up lines.

  • PDF

Aging Diagnosis by Analyzing The Electrical Characteristics of Series Hybrid Generator (직렬형 하이브리드용 발전기의 전기적 특성분석 및 열화진단)

  • Lee, Kang-Won;Jang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1439-1443
    • /
    • 2011
  • Bimodal Tram is the new conceptual and environmental-friendly public transportation which adopted series hybrid system. The generator driven by CNG engine supplies the electric power to Battery and traction motor. The generator installed on the vehicle will experience the mechanical vibration and electrical transient variation. Those may cause some defects on the generator which will be the hazardous effects to the vehicle. This paper has investigated the possibility to find out some diagnostic features for the defects of generator through the voltage and current generated from it. Those were analyzed in both time and frequency regions. For the next, more works will be needed to complete the purpose of this paper.

  • PDF

Study on the efficient maintenance of wheel for High Speed Train (고속철도 차륜의 효율적인 관리에 관한 연구)

  • Kim Myeong-Soo;Koo Jeong-Seo;Lee Hi-sung;Kwon Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.318-325
    • /
    • 2005
  • In present, KTX's wheel is worn inevitably according to the interaction with rail in service. It was analyzed by wearing type, damage type and wheel reprofiling cycle on the running surface. As a result, damage on the running surface is main cause to reprofile the wheel. Wearing type of wheel is normal and it hasn't reprofiled according to normal wheel wear. As a follow-up result of the whee] defects on the running surface, if the defects size is well managed by periodical inspection, it would be efficient to increase the wheel life.

  • PDF

Improvement of Mold Filling in Aluminum Gravity Die Casting by Vacuum Suction (알루미늄 합금의 중력금형주조 시 진공감압을 이용한 충전성 개선)

  • Kim, Jeong-Kook;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.29 no.3
    • /
    • pp.138-143
    • /
    • 2009
  • Vacuum suction is applied to the mold during pouring in the inclined gravity die casting to remove defects such as misrun and gas porosity in the brake master cylinder. Casting defects are observed after solidification and their cause is analyzed by using the calculated results with commercial solidification and flow analysis code(ZCAST). The optimum vacuum suction is -2 cmHg, and when the start time of vacuum suction is 3 seconds after pouring, better filled result is obtained by holding it for 15 seconds. Reproducibility test under the optimum conditions attained from the above pouring tests is performed, and it is confirmed that these pouring conditions can be applied to the mass production immediately.

Faults Detection Method Unrelated to Signal to Noise Ratio in a Hub Bearing (신호대 잡음비에 무관한 허브 베어링 결함 검출 방법)

  • Choi, Young-Chul;Kim, Yang-Hann;Ko, Eul-seok;Park, Choon-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1287-1294
    • /
    • 2004
  • Hub bearings not only sustain the body of a cat, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, nitration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has Periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

Faults Detection in Hub Bearing with Minimum Variance Cepstrum (최소 분산 켑스트럼을 이용한 자동차 허브 베어링 결함 검출)

  • 박춘수;최영철;김양한;고을석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.593-596
    • /
    • 2004
  • Hub bearings not only sustain the body of a car, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, vibration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

  • PDF

Opportunity Tree and Algorithm design to schedule management (일정관리를 위한 Opportunity Tree 및 알고리즘 설계)

  • Lee, Eun-Se;Lee, Sang-Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.7 s.103
    • /
    • pp.965-978
    • /
    • 2005
  • There are many defects that cause the schedule and qualify problems during software development. This paper designs the opportunity tree framer work that removes and manages the schedule and quality problems as well. For the similar projects, we can estimate defects and prepare to solve them by using domain expert knowledge and the opportunity tree framework which can greatly improve the software process. This research provides solution of schedule defect problem and detection of defect and its causes that happen on software development.

Analysis of Major Factors of Window Work in Construction Phase Considering Recurrence of Defects in the Maintenance Phase (유지관리단계의 하자 재발생을 고려한 창호공사 시공단계의 중점관리요소 분석)

  • Jeong, U Jin;Kim, Dae Young;Lim, Jeeyoung;Park, Hyun Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.653-664
    • /
    • 2021
  • As the construction standards for energy-saving eco-friendly housing have recently been strengthened, the proportion of window work has increased with the demand for high-efficiency housing. Windows have high frequency of use, and there is the potential for many defects to occur depending on the characteristics of construction. According to a government agency's survey of defects in public rental apartment housing, defects in the windows work accounted for the highest portion of complaints received. Accordingly, related previous studies were considered, and it was found that the existing studies in Korea lacked research that reflected the construction characteristics of window work and the importance of maintenance. In addition, existing overseas studies considered both the constructor and the resident's position, considering the cost aspect together, and showed a trend of structuring the relationship between defects and causes. Therefore, this study will analyze the causes of defects that can occur in the construction phase of the windows work, reflect the construction characteristics, and derive major factors that consider the importance of maintenance based on the possibility of recurrence after repairing defects. Ultimately, this research will contribute to preventing defects in the construction phase and reducing maintenance costs by presenting a highly effective defect management plan through selecting the major factors for each defect type that can be intuitively judged by analyzing the causal relationship between defect types and causes.

Analyzing Leakage Defect Types in Educational Facilities and Deriving Key Management Strategies Using the FTA Method (FTA기법을 이용한 교육시설 누수 하자 유형 분석 및 주요 원인 관리방안 )

  • Jung, Daegyo;Park, Hyunjung;Lee, Dongyeop;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2024
  • In recent years, the construction industry has diligently focused on improving the quality and safety of buildings through smart technologies. However, there is a growing trend of leakage defects, especially in educational facilities, due to aging. The objective of this study is to analyze the causes of these defects in educational environments using the Fault Tree Analysis (FTA) technique and propose preventive measures based on the findings. The FTA technique is explained through a review of domestic literature, and data from the Educational Support Center from 2019 to 2021 are examined to identify major defects. The construction of the Fault Tree (FT) for leakage defects resulted in the identification of 12 basic events. Subsequently, a comprehensive understanding of the causes of leakage is achieved through FTA analysis, leading to the identification of the primary causes of defects. Leakage defects accounted for 46.8% of all reported issues in educational facilities, with roof (ceiling) leaks being the most common problem. FTA analysis revealed that poor substrate treatment was the main cause of roof (ceiling) leaks, which could be attributed to cracks in the waterproof layer, joint cracks, and microvoids in the waterproof layer. The primary achievement of this research is to provide essential data for preventing leakage defects in educational facilities and developing preventive measures through the FTA technique. These results are expected to significantly enhance the management of educational facilities and the prevention of leakage issues.