• 제목/요약/키워드: causal Markov condition

검색결과 3건 처리시간 0.015초

인과적 마코프 조건과 비결정론적 세계

  • 이영의
    • 논리연구
    • /
    • 제8권1호
    • /
    • pp.47-67
    • /
    • 2005
  • 베이즈망은 탐구 공간을 구성하는 변수들 사이에 성립하는 확률적 관계를 이용하여 그 변수들 사이에 성립된다고 가정되는 인과 관계를 추론하는데 이용된다. 베이즈망에 관한 철학적 논쟁의 대상은 특정한 변수들의 확률적 독립성을 가정하는 인과적 마코프 조건이다. 베이즈망 이론에 대한 강력한 비판자인 카트라이트는 인과적 마코프 조건이 비결정적 세계에서는 성립될 수 없기 때문에 인과적 추리에 대한 타당한 원리가 될 수 없다고 주장한다. 이글의 목적은 인과적 마코프 조건이 인과적 추리에 대한 타당한 원리가 될 수 없다는 카트라이트의 비판이 타당한가를 검토하는 것이다. 나는 인과적 사건들의 연쇄를 허용하는 연속모델은 카트라이트의 비판을 벗어날 수 있다고 주장한다.

  • PDF

인과적 범주의 속성추론 모델링 (Modeling feature inference in causal categories)

  • 김신우;이형철
    • 인지과학
    • /
    • 제28권4호
    • /
    • pp.329-347
    • /
    • 2017
  • 범주기반 속성추론에 대한 초기연구들은 전형성, 다양성, 유사성 효과 등 인간 사고에서 나타나는 다양한 현상들을 보고하였다. 이후 연구들은 이러한 추론에서 참가자들의 사전지식이 광범위한 영향을 미친다는 것을 발견하였다. 본 연구에서는 다양한 사전지식들 중 하나인 인과적 지식이 속성추론에 미치는 영향을 검증하고 이를 모델링하였다. 이를 위해 참가자들은 네 개의 속성으로 구성된 범주에서 속성들이 공통원인 혹은 공통효과 인과구조로 연결되었을 때 속성추론과제를 실시하였다. 그 결과 전형성 효과와 더불어 공통원인 구조에서 인과적 마코프 조건(causal Markov condition)에 대한 위배와 공통효과 구조에서 인과적 절감(causal discounting)이 관찰되었다. 이를 모델링하기 위해 참가자들은 표적속성이 존재하는 범주예시와 존재하지 않은 범주예시가 존재할 가능성에 대한 차이값 (즉, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$에 근거하여 속성추론을 수행한다고 가정하였다. 인과모형이론(Rehder, 2003)에 기반하여 범주예시들의 확률값을 계산한 후 각 표적속성에 대한 추론에 적용하였다. 그 결과 모형은 참가자들의 데이터에서 관찰된 전형성 효과뿐만 아니라 인과적 마코프 조건에 대한 위배 및 인과적 절감을 모두 예측한다는 것이 확인되었다.

인과적 사슬구조에서의 범주기반 속성추론 (Category-based Feature Inference in Causal Chain)

  • 최인범;이형철;김신우
    • 감성과학
    • /
    • 제24권1호
    • /
    • pp.59-72
    • /
    • 2021
  • 개념과 범주는 관찰하지 못한 속성을 추론할 수 있는 기반을 제공한다. 무의미 속성을 사용한 범주기반 속성추론 연구들은 범주 및 속성의 유사성이 추론을 설명하는 핵심 요인이라는 것을 제안했다(Rips, 1975; Osherson et al., 1990). 이후 연구들은 사람들의 사전지식이 범주기반 추론에 막대한 영향을 미치며 심지어 유사성 효과가 완전히 사라지는 경우도 있음을 보고했다. 본 연구는 범주 속성들이 사전지식의 한 종류인 인과적 지식에 의해 사슬구조로 연결되었을 때의 범주기반 속성추론을 검증했으며 그 결과를 예측하는 속성추론모형을 제안했다. 참가자들은 네 개의 속성들이 사슬구조를 이루는 인과적 범주를 학습한 뒤 해당 범주의 다양한 범주 예시들의 숨겨진 속성에 대한 추론을 실시했다. 그 결과 인과적으로 직접 연결된 속성뿐만 아니라 다른 속성 노드에 의해 차폐된 속성들도 추론에 영향을 미치는 비독립성이 나타났다(인과적 마코프 조건의 위배). 인과모형이론(Sloman, 2005)에 기반한 속성추론모형을 적용하여 참가자들의 추론을 모델링한 결과 인과적 연결의 직접 효과뿐만 아니라 간접 효과 즉 인과추론의 비독립성도 예측하는 것으로 나타났다. 다만 간접적으로 연결된 속성들은 인과적 거리와 무관하게 참가자들의 추론평정에 동일하게 영향을 미쳤지만 모형은 거리가 멀어짐에 따라 추론에 미치는 영향이 작아짐을 예측했다.