• Title/Summary/Keyword: cationic

Search Result 1,232, Processing Time 0.028 seconds

Anti-inflammatory Activity of Antimicrobial Peptide Protaetiamycine 2 Derived from the Protaetia brevitarsis seulensis (흰점박이꽃무지 유래 항균 펩타이드 프로테티아마이신 2의 항염증활성)

  • Lee, Joon Ha;Baek, Minhee;Lee, Hwa Jeong;Kim, In-Woo;Kim, Sun Young;Seo, Minchul;Kim, Mi-Ae;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1218-1226
    • /
    • 2019
  • The white-spotted flower chafer Protaetia brevitarsis seulensis is a medicinally beneficial and important edible insect species. We previously performed an in silico analysis of the Protaetia brevitarsis seulensis transcriptome to identify putative antimicrobial peptides and then tested their antimicrobial and hemolytic activities. These peptides had potent antimicrobial activities against bacteria and yeast without inducing hemolysis. In the present study, the cationic antimicrobial peptide, protaetiamycine 2, was selected for further assessment of its anti-inflammatory properties in mouse macrophage Raw264.7 cells. Protaetiamycine 2 treatment of Raw264.7 cells suppressed LPS-induced nitric oxide production and reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2, as determined by real-time PCR and western blotting. The expression of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) was also attenuated through the MAPKs and $NF-{\kappa}B$ signaling. We also confirmed that protaetiamycine 2 bound to bacterial cell membranes by a specific interaction with LPS. Collectively, these data obtained from LPS-induced Raw264.7 cells indicated that protaetiamycine 2 could have both antimicrobial and anti-inflammatory properties.

A Low Irritant Liquid Cleanser Composition Developed by Multi-Screening Methods (다탐색(多探索)법을 통한 저자극성 액체 세정제 조성물 개발)

  • Kim Peter;Hyeon Ki-An;Chung Ji-Youn;Yoon Sam-Sook;Kang Han Chyul;Park Sun Hee;Ko King Il;Kim Ki Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.51-58
    • /
    • 2005
  • Alkyl ethoxy sulfate type surfactants, widely used in commercial cleansers, are easily adsorbed to skin to often cause skin irritation and inflammation if not thoroughly rinsed nut. In order to replace or complement existing surfactants, we screened the existing surfactants through protein denaturation method, cell cytotoxicity assay and human IL-1$\alpha$ assay, etc. Fourteen surfactants have been chosen from among too irritant anionic, cationic and/or zwitter-ionic ones and investigated for cell cytotoxicity in human fibroblast cell lines using monolayer culture with the thirteen commercially available cleansers for sensitive skin. From these results, we selected 5 surfactants and 2 commercial cleansers (names not shown), such as sodium laureth sulfate (anionic), sodium cocoyl isethionate (anionic), sodium lauroamphoacetate (zwitter-ionic), and cocamidopropyl betaine (zwitter-ionic), alkyl polyglycoside (non-ionic). 20 formulations were made out of 5 surfactants and five of them were chosen through a protein denaturation method (lower than 3 M sodium dodecyl sulfate solution ($13.2\%$)), cell cytotoxicity and human patch test. These five selected formulations containing preservatives were compared to two selected commercial cleansers by cell cytotoxicity and human IL-1$\alpha$ ELISA assay using dermal equivalent. Finally, we selected the best formulation. To this formulation, fructan ($3\%$ or $5\%$) or/and portulaca extract ($3\%$ or $5\%$) well known for its anti-inflammatory and moisturizing effects were added and investigated for cell cytotoxicity using dermal equivalent. In cytotoxicity assay using dermal equivalent, two formulations containing $5\%$ fructan and $3\%$ or $5\%$ portulaca extract were less toxic than the others. In cytotoxicity assay and human IL-1$\alpha$ ELISA using 3D culture, the selected formulation containing $5\%$ fructan and $5\%$ portulaca extract showed better efficiency than those of the others and 2 commercial cleansers. As a result, we could develop a low irritant and safe liquid cleanser.