• Title/Summary/Keyword: cation exchange resin

Search Result 160, Processing Time 0.022 seconds

The Effect of chemical and physical properties of Korean tales on the decomposition of Malathion in dust formulations

  • Kang, Duk-Chae;Lee, Sung-Hwan;Cho, Chai-Moo
    • Applied Biological Chemistry
    • /
    • v.2
    • /
    • pp.45-52
    • /
    • 1961
  • The decomposition of malathion in dust for mulations prepared from four Korean tales as carriers during storage period has been studied. Amberlite CG-120, a cation exchange resin . which has higher cation exchange capacity than tales, was also used as a carrier in hope of finding out the effect of nagative charge upon the decomposition of malathion. Besides the original talc powders obtained directly from the mines, the hydrogen ion saturated forms were also used as carriers for comparisonal study. The saturated ions for the resin were hydrogen, sodium and magnesium. As the physical properties of the tales, colloid content, water adsorption capacity, PH, specific surface, phosphate fixing capacity and exchangeable canons were determined, and these properties were correlated with the amount of the decomposition. Following results were obtained from the experiment. 1. The malathion in the talc in dust was found to decompose around 10-15% ofthe total withina month. About 50% of the decom position that took place after a month was found to occur within a week. 2. The resin which has higher cation exchange capacity than the tales was highly effective in the decomposition of malathion compared with the tales. 3. In every case the saturation of the exchange complexes with hydrogen ion greatly accelerated the decomposition of malathion. 4. The most highly correlated physical properties with the decomposition were colloid content and specific surface of the tales. 5. The water adsorption and phosphate fixing capacities of the tales were found not to correlate with the amount of malathion decomposed. From the experimental results it was concluded that the active negative spots on the colloidal tales or the resin attract the electropositive phosphorus atom in a malathion molecule thereby inducing the decomposition easier. The presence of hydrogen ion nearby might cause a catalytic effect in the decomposition of malathion.

  • PDF

Development and Application of Cation-exchange Membranes Including Chelating Resin for Efficient Heavy-metal Ion Removal (효율적인 중금속 이온 제거를 위한 킬레이팅 수지를 포함한 양이온 교환막의 개발 및 응용)

  • Kim, Do-Hyeong;Choi, Young-Eun;Park, Jin-Soo;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.129-137
    • /
    • 2017
  • In this study, we have developed cation-exchange membranes (CEMs) which can efficiently separate heavy-metal ions among the cations contained in a water system. Sulfonated polyetheretherketone (SPEEK) was used as a base polymer and a powdered chelating resin with strong binding ability to heavy-metal ions was added into it. In order to optimize the performance of the CEM, the content of chelating resin powder and the ion exchange capacity of SPEEK have been controlled. As a result, it was confirmed that the removal efficiency of heavy metal ion was improved by more than 20% by applying the CEM to membrane capacitive deionization (MCDI).

Measurement of Carbon-14 Activity in Spent Ion-exchange Resin of Wolsong Nuclear Power Plant

  • Kim Kyoung-Doek;Choi Young-Ku;Kang Ki-Du;Yang Ho-Yeon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.165-175
    • /
    • 2005
  • Measurement of spent resin activity was initiated in 2004 in order to develop the C-14 removal technology for safe disposal. As part of this program, spent resins were sampled and measured in the in-station resin storage tank 2 at Wolsong Nuclear Power Plant Unit 1. At the time of sampling, the resins had been in storage tank from 3 to 23 years. Total 72 resin samples were sampled, which were collected from both man-hole (68 samples) and test-hole (4 samples) in the in-station resin storage tank 2. They were separated into liquid, activated carbon, zeolite, and spent resin. The spent resins were oxidized with sample oxidizer and analyzed for C-14. Ten of collected mixed resin samples were separated by density into cation and anion resins using a sugar solution. The C-14 concentration in anion exchange resin was approximately 2 times higher than in the mixed resin. The average concentration of C-14 in the cation/anion mixed exchange resin was $460\;GBq/m^3$ from test-hole and $53.1\;GBq/m^3$ from man-hole. We have found that concentration of C-14 in the spent resin is about from 0.4 to $1,321\;GBq/m^3$. So it could be a problem, when dispose of at a repository, since there is a disposal limit of $222\;GBq/m^3$. This means we should develop the C-14 removal technology.

  • PDF

Ion Exchange Modeling with Mass Action Law and Surface Complexation Models (질량작용법칙과 표면착화모델을 이용한 이온교환 모델링)

  • 안현경;김상대;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.296-300
    • /
    • 2003
  • A large equilibrium and kinetic data set for multi-component cation exchanges was obtained and tested with mass action law and surface complexation model. The systematic batch equilibrium and column experiments of cation adsorption were conducted for binary, ternary, quaternary, and quinary cation exchanges involving $ H^{+}, Li^ {+}, Na^{+}, NH$_4$^{+}, Mg^{2+} $ on a strongly acidic cation exchange resin IRN 77. The mass action law and surface complexation model were tested against both data set to investigate the consistency of ion selectivity and their predictability for competitive cation exchanges. Surface complexation model provided more accurate predictions for both equilibrium and kinetic experimental data than mass action model.

  • PDF

Studies on the Cation Exchange Elution Behaviors of Metal Complexes

  • Chung Yong-Soon;Lee Byung-Kiu;Oh Chang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.2
    • /
    • pp.76-79
    • /
    • 1983
  • The elution behaviors of a series of metal complexes, such as $Co(gly)_{3}$, $[Ni(en)_{3}]^{2+}$, $[Ni(phen)_3]^{2+}$, $[Fe(phen)_3]^{2+}$, $[Co(phen)_3]^3+$, $[Co(tn)_3]^3+$, $[Co(en)_3]^3+$ and $[Co(NH_3)_6]^3+$ (where gly; glycine, phen; phenanthroline, tn; trimethylenediamine, en; ethylenediamine), were studied in aqueous solution by measuring the retention volumes (v values) on SP-Sephadex C-25, cation exchange resin. It was found that the elution behaviors of metal complexes were apparently affected by salt concentrations, kinds of cations in eluent and kinds of anions in eluent, and according to the degrees of their effects coulombic forces, ion exchange capacities, the 'solvent effect' of resin backbone, hydrophobicity and hydrophilicity were applied to explain the elution mechanism.

Studies on the Cation Exchangers from Coals (炭質陽이온交煥體 製造에 關한 硏究)

  • Lee, Bum-Soon;Yoo, In-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.62-66
    • /
    • 1957
  • With the intention of preparing cation exchangers from the domestic coals, and using these for softening hard water and some other purposes, seven kinds of raw coal were tested and the results are as follows. 1) The following conditions of preparation were given the good results. Reaction time 5 hours Reaction temperature $95^{\circ}$ Concentration of sulfuric acid 98% Amount of sulfuric acid 10 times to the sample (as weight) 2) The raw coals which is rich in fixed carbon and have the fuel ratio 0.8 to 1.0 were suitable, and Kampo lignite has shown the best results. 3) The cation exchangers from coals were able to exchange the cation, both hydrogen and sodium type dynamically and statically, like the synthetic ion exchange resin. The exchange capacities were as follows. Total capacity 1.60 meq/g. Breakthrough capacity 1.30 meq/g. Usable breakthrough capacity 1.20 meq/g National Central Research laboratory

  • PDF

Ion Exchange of Ultrafiltrated Soybean Cooking Water for the Production of Soy-oligosaccharides (대두올리고당 생산을 위한 한외여과 대두침출액의 이온교환)

  • Ku, Kyung-Hyung;Park, Dong-June;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.313-317
    • /
    • 1995
  • Ion exchange process was optimized to purify ultrafiltrated bean cooking water(BCW) for the production of soy-oligosaccharides. The ultrafiltrated BCW with cutoff MW(COMW) 20,000 membrane was treated with various ion exchange resins. Protein and ash were mostly removed by anion and cation exchange resins, respectively. Based upon removing capabilities for ash and protein, a cation exchange resin(SK1B) and an anion exchange resin(WA30) were selected. Protein and ash were more efficiently removed at low extract/resin ratios(ERR), but part of the oligosaccharides were concomitantly lost. When 2-step-ultrafiltrated BCW first with COMW 20,000 membrane and successively with COMW 5,000 membrane was treated with a mixed resin(SK1B : WA30 =1 : 2) at ERR 5.0, most oligosaccharides were recovered in a clear protein- and ash-free liquid.

  • PDF

Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin (오염된 물로부터 이온교환수지를 이용한 방사성이온 제거)

  • Shin, Do Hyoung;Ju, Ko Woon;Cheong, Seong Ihl;Rhim, Ji Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.633-638
    • /
    • 2016
  • In this study, we used three kinds of commercially available cation, anion, and mixed-ion exchange resins to separate radioactive ions from a polluted water containing Cs, I, and other radioactive ions. The experiment was conducted at a room temperature with a batch method, and a comparative analysis on the decontamination ability of each resin for the removal of Cs and I was performed by using different quantities of resins. The concentration was analyzed using ion chromatography and the ion exchange resin product from company D showed an overall high ion exchange ability. However, for most of the experiments when the amount of ion exchange resin was decreased, the decontamination ability of the resins against mass increased. When the mass of company D's cation exchange resin was small, the ion exchange ability against Cs and I ions were measured as 0.199 and 0.344 meq/g, respectively. When the mixed ion exchange resin was used, the ion exchange ability against I ions was measured as 0.33 meq/g. All in all, company D's ion exchange resins exhibited a relatively higher ion exchange ability particularly against I ions than that of other companies' exchange ions.

Removal of Alkali Metal Ion and Chlorine Ion Using the Ion Exchange Resin (이온교환수지를 이용한 알칼리 금속 이온 및 염소 이온의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.276-281
    • /
    • 2020
  • A research was conducted on the removal of ion from the solution involving the alkali metal ion and chlorine ion using ion exchange resin. The cation exchange resin and anion exchange resin was used for the remove of metal ion (Na+ and K+) and chlorine ion (Cl-), respectively. In the case of solution A (involving 36,633 ppm of Na+ and 57,921 ppm of Cl-), the Na+ ion and Cl- ion were removed over 99% within 20 min. In the case of solution B (involving 1,638 ppm of K+), the K+ ion was removed over 99% within 3 min.

The design parameter evaluation of ion exchange process for ultra pure water production (초순수 생산을 위한 이온교환공정 설계특성 평가)

  • Park, Se-Chool;Kwon, Boung-Su;Lee, Kyung-Hyuk;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, cation and anion exchange process for performance evaluation was conducted. A pilot plant for the ultrpure water production was installed with the capacity of $25m^3/d$. The various production rate and regeneration of ion exchange rate were tested to investigate the design parameters. The test resulst was applied to calculate the operating costs. Changing the flow rate of the ion exchange capacity of the reproduction reviewed the cation exchange process as opposed to the design value is 120 to 164% efficiency, whereas both anion exchange process is 82 to 124% efficiency, respectively. This results can be applied for more large scale plant if the scale up parameters are consdiered. The ion exchange capacity of the application in accordance with the design value characteristic upon application equipment is expected to be needed. In this study, the performance of cation and anion exchange resin process was evaluated with pilot plant($25m^3/d$). The ion exchange capacity along with space velocity and regeneration volume was evaluated. In results, the operation results was compared with design parameters.