• 제목/요약/키워드: catenin

검색결과 334건 처리시간 0.027초

Proteolysis of $\beta$-Catenin in Apoptotic Jurkat Cells

  • Hwang, Sang-Gu;Park, Jeong-Uck;Lee, Hyung-Chul;Joo, Woo-Hong;Cho, Yong-Kweon;Moon, Ja-Young
    • Journal of Life Science
    • /
    • 제10권1호
    • /
    • pp.57-63
    • /
    • 2000
  • ${\beta}$-catenin, which plays a critical role in both the cytoskeleton and in transcriptional regulation in variousadherent cell types, undergoes degradation during adherent cell apoptosis. Although ${\beta}$-catenin has been reported to be present in Jurkat T-acute lymphoblastic leukemia cells, the regulation of ${\beta}$-catenin in hematologic malignancies have not been examined. The data presented here demonstrate that treatment of the T cell leukemia Jurkat iwht the apoptosis inducer anti-Fas induced proteolytic cleavage of ${\beta}$-catenin. ${\beta}$-catenin was cleaved at both the N- and C-terminus after anti-Fas treatment. Cleavage of intact ${\beta}$-catenin was completely inhibited by caspase selective protease inhibitors. These data demonstrate that ${\beta}$ -catenin proteolysis is triggered by the cross-linking of the Fas receptor on Jurkat cells and subsequent activation of caspase protease. There was a clear accumulatio of the large proteolytic fragment in Jurkat cells treated with lactacystin of ALLM. These are potent inhibitors of proteasome and calpain. these results suggest that both the proteasome and clapain may recognize the large ${\beta}$-catenin fragment as a substrate fot further degradation and that these pathewasy may act downstream of scapase in response to Fas receptor activation. Therefore, we suggest that ${\beta}$-catenin may play a role in promoting Jurkat survival.

AXIN2 Polymorphisms, the β-Catenin Destruction Complex Expression Profile and Breast Cancer Susceptibility

  • Aristizabal-Pachon, Andres Felipe;Carvalho, Thais Inacio;Carrara, Helio Humberto;Andrade, Jurandyr;Takahashi, Catarina Satie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7277-7284
    • /
    • 2015
  • Background: The Wnt/${\beta}$-catenin signaling pathway is an important regulator of cellular functions such as proliferation, survival and cell adhesion. Wnt/${\beta}$-catenin signaling is associated with tumor initiation and progression; ${\beta}$-catenin mutations explain only 30% of aberrant signaling found in breast cancer, indicating that other components and/or regulation of the Wnt/${\beta}$-catenin pathway may be involved. Objective: We evaluated AXIN2 rs2240308 and rs151279728 polymorphisms, and expression profiles of ${\beta}$-catenin destruction complex genes in breast cancer patients. Materials and Methods: We collected peripheral blood samples from 102 breast cancer and 102 healthy subjects. The identification of the genetic variation was performed using PCR-RFLPs and DNA sequencing. RT-qPCR was used to determine expression profiles. Results: We found significant association of AXIN2 rs151279728 and rs2240308 polymorphisms with breast cancer risk. Significant increase was observed in AXIN2 level expression in breast cancer patients. Further analyses showed APC, ${\beta}$-catenin, CK1${\alpha}$, GSK3${\beta}$ and PP2A gene expression to be associated to clinic-pathological characteristics. Conclusions: The present study demonstrated, for the first time, that AXIN2 genetic defects and disturbance of ${\beta}$-catenin destruction complex expression may be found in breast cancer patients, providing additional support for roles of Wnt/${\beta}$-catenin pathway dysfunction in breast cancer tumorigenesis. However, the functional consequences of the genetic alterations remain to be determined.

δ-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer

  • Shrestha, Nensi;Shrestha, Hridaya;Ryu, Taeyong;Kim, Hangun;Simkhada, Shishli;Cho, Young-Chang;Park, So-Yeon;Cho, Sayeon;Lee, Kwang-Youl;Lee, Jae-Hyuk;Kim, Kwonseop
    • Molecules and Cells
    • /
    • 제41권4호
    • /
    • pp.320-330
    • /
    • 2018
  • ${\delta}$-Catenin, a member of the p120-catenin subfamily of armadillo proteins, reportedly increases during the late stage of prostate cancer. Our previous study demonstrates that ${\delta}$-catenin increases the stability of EGFR in prostate cancer cell lines. However, the molecular mechanism behind ${\delta}$-catenin-mediated enhanced stability of EGFR was not explored. In this study, we hypothesized that ${\delta}$-catenin enhances the protein stability of EGFR by inhibiting its lysosomal degradation that is mediated by c-casitas b-lineage lymphoma (c-Cbl), a RING domain E3 ligase. c-Cbl monoubiquitinates EGFR and thus facilitates its internalization, followed by lysosomal degradation. We observed that ${\delta}$-catenin plays a key role in EGFR stability and downstream signaling. ${\delta}$-Catenin competes with c-Cbl for EGFR binding, which results in a reduction of binding between c-Cbl and EGFR and thus decreases the ubiquitination of EGFR. This in turn increases the expression of membrane bound EGFR and enhances EGFR/Erk1/2 signaling. Our findings add a new perspective on the role of ${\delta}$-catenin in enhancing EGFR/Erk1/2 signaling-mediated prostate cancer.

Predictive Value of the Pattern of β-Catenin Expression for Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients

  • Elsamany, S;Elemam, O;Elmorsy, S;Alzahrani, A;Abbas, MM
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.4089-4093
    • /
    • 2016
  • Purpose: This study aimed to explore the association of ${\beta}-catenin$ expression pattern with pathological response after neoadjuvant chemotherapy in breast cancer (BC) patients. Materials and Methods: In this retrospective exploratory study, data for 50 BC patients who received neoadjuvant chemotherapy were recorded. ${\beta}-catenin$ expression in tumours was assessed using immunohistochemistry and classified as either membranous or cytoplasmic according to the pattern of staining. Distributions of different clinico-pathological parameters according to ${\beta}-catenin$ expression were assessed using the Chi-square test. Logistic regression analysis was used to assess any relation of the pattern of ${\beta}-catenin$ expression with the pathological response. Results: Cytoplasmic ${\beta}-catenin$ expression was detected in 34% of BCs. Among our cases, 52% were hormonal receptor (HR)-positive, 24% were HER2-positive, 74% were clinical stage III and 74% received both anthracycline and taxane-based chemotherapy. Patients with cytoplasmic expression were more commonly younger than 40 years at diagnosis (cytoplasmic, 41.2% vs. no cytoplasmic expression, 12.1%, p=0.03). By doing t-test, cytoplasmic ${\beta}-catenin$ expression was linked with a higher body mass index compared to membranous-only expression ($mean{\pm}SD$ $33.0{\pm}4.47$ vs. $29.6{\pm}6.01$, respectively, p=0.046). No significant associations were found between ${\beta}-catenin$ expression and other parameters such as HR and HER2 status, or clinical stage. Complete pathological response (pCR) rate was twice as great in patients with membranous expression but without statistical significance (membranous-only, 33.3% vs. cytoplasmic, 17.6%, OR= 2.3, 95% CI= 0.55-9.87, p=0.24). Conclusions: This study suggests that cytoplasmic ${\beta}-catenin$ expression may be linked with lower probability of achieving pCR after neoadjuvant chemotherapy. These data need to be validated in a larger cohort of patients.

β-catenin protein utilized by Tumour necrosis factor-α in porcine preadipocytes to suppress differentiation

  • Luo, Xiao;Li, Hui-Xia;Liu, Rong-Xin;Wu, Zong-Song;Yang, Ying-Juan;Yang, Gong-She
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.338-343
    • /
    • 2009
  • The Wnt/$\beta$-catenin signaling pathway alters adipocyte differentiation by inhibiting adipogenic gene expression. $\beta$-catenin plays a central role in the Wnt/$\beta$-catenin signaling pathway. In this study, we revealed that tumour necrosis factor-$\alpha$ (TNF-$\alpha$), a potential negative regulator of adipocyte differentiation, inhibits porcine adipogenesis through activation of the Wnt/$\beta$-catenin signaling pathway. Under the optimal concentration of TNF-$\alpha$, the intracellular $\beta$-catenin protein was stabilized. Thus, the intracellular lipid accumulation of porcine preadipocyte was suppressed and the expression of important adipocyte marker genes, including peroxisome proliferator-activated receptor-$\gamma$ (PPAR$\gamma$) and CCAAT/enhancer binding protein-$\alpha$ (C/EBP$\alpha$), were inhibited. However, a loss of $\beta$-catenin in porcine preadipocytes enhanced the adipogenic differentiation and attenuated TNF-$\alpha$ induced anti-adipogenesis. Taken together, this study indicated that TNF-$\alpha$ inhibits adipogenesis through stabilization of $\beta$-catenin protein in porcine preadipocytes.

Screening of ${\beta}$-Catenin/TCF Transcription Factor Inhibitors in Medicinal Herb Extracts

  • Choe, Ye-Dang;Na, Byung-Jo;Park, Se-Yeon
    • 대한한의학회지
    • /
    • 제32권3호
    • /
    • pp.35-43
    • /
    • 2011
  • Objectives: This study was performed to screen target-specific inhibitors of ${\beta}$-catenin/TCF signaling whose functional activation plays an important role in early events in carcinogenesis. Methods: To investigate the activation or suppression of ${\beta}$-catenin/TCF transcription, we established a transiently transfected cell line with a constitutively active ${\beta}$-catenin mutant gene whose product is not degraded. This cell line was also co-transfected with luciferase reporter gene constructs containing either an optimized (TOPflash) or mutant (FOPflash) TCF-binding element. We investigated cytotoxic effects using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. To find effective inhibitors of ${\beta}$-catenin/TCF signaling from medicinal herbs, the crude extracts of 99 types of medicinal herbs were screened using a luciferase assay system in HEK-293 and SH-SY5y cells. Results: At a concentration of $50{\mu}g$/ml, extracts of Angelica koreanae radix, Cannabis sativa semen, Ephedrae intermedia Schrenk radix, and Vitis rotundifolia fruit showed the following inhibitory effects on ${\beta}$-catenin/TCF signaling: $40{\pm}5.6%$, $23{\pm}6.1%$, $8{\pm}5.1%$, and $22{\pm}9.8%$ in ${\beta}$-catenin-activated HEK-293 cells and $9{\pm}4.7%$, $39{\pm}8.1%$, $39{\pm}6.4%$, and $42{\pm}10.1%$ in ${\beta}$-catenin-activated SH-SY5y cells, respectively. Crude extracts of E. radix were isolated by silica gel column chromatography, and two non-polar fractions of these extracts showed inhibitory effects on ${\beta}$-catenin/TCF signaling. Conclusions: In this study, we established a transiently transfected cell line as a screening system and found that various medicinal herb extracts had inhibitory effects on ${\beta}$signaling.

Cloning, Purification and NMR Studies on β-catenin C-terminal Domain

  • Oh, Jeongmin;Choi, Sooho;Yun, Ji-Hye;Ko, Yoon-Joo;Choi, Kang-Yell;Lee, Weontae
    • 한국자기공명학회논문지
    • /
    • 제21권2호
    • /
    • pp.72-77
    • /
    • 2017
  • ${\beta}-catenin$ is a key signaling protein which regulates cell signaling and gene transcription. Abnormal activation of ${\beta}-catenin$ is linked to many cancers, particularly with colorectal cancers. Although many genetic and biological studies on $Wnt/{\beta}-catenin$ have been reported and structures of the complex between ${\beta}-catenin$ and its diverse binding partners have been published, many of them have focused on armadillo repeat domain of ${\beta}-catenin$. Both N- and C-terminal domains have been suggested to regulate interactions of ${\beta}-catenin$ with other molecules, but still little is known about the C-terminal unstructured domain. To investigate the structure of this domain, construct of C-terminus was designed and structural studies were performed using size exclusion chromatography (SEC), circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy. We observed that not only the purified full-length construct but the purified C-terminal construct also dimerizes in solution by SEC, suggesting that this domain involves in dimerization of ${\beta}-catenin$. CD and fluorescence data indicate its flexibility and structural formation in the presence of membrane environments.

참식나무(Neolitsea sericea) 기주 참나무겨우살이(Taxillus yadoriki) 가지 추출물의 폐암세포 A549에 대한 세포생육 억제활성 (Inhibitory Effect of the Branch Extracts from Taxillus yadoriki Parasitic to Neolitsea sericea against the Cell Proliferation in Human Lung Cancer Cells, A549)

  • 박수빈;김하나;김정동;박광훈;어현지;안미연;정진부
    • 한국자원식물학회지
    • /
    • 제32권2호
    • /
    • pp.109-115
    • /
    • 2019
  • 이상의 연구 결과로 미루어 볼 때, 참식나무 기주 참나무겨우살이(TY-NS-B)는 $GSK3{\beta}$에 의한 ${\beta}$-catenin 인산화에 의존하지 않는 ${\beta}$-catenin의 분해 유도를 통해 암세포의 생육과 관련된 c-Myc의 발현을 억제하며, 이것은 비소세포성 폐암의 생육억제와 관련이 있는 것으로 판단된다. 또한, 본 결과는 항암을 위한 대체보완소재로 참식나무 기주 참나무겨우살이의 활용이 가능할 것으로 판단된다. 그러나 추가적 연구를 통해 참식나무 기주 참나무겨우살이가 어떻게 ${\beta}$-catenin의 분해 유도에 관여하는지에 대한 기전연구와 관련 활성물질의 분석연구가 필요할 것으로 사료된다.

Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling

  • Kim, Soyoung;Jho, Eek-hoon
    • BMB Reports
    • /
    • 제49권7호
    • /
    • pp.357-358
    • /
    • 2016
  • Merlin, encoded by the NF2 gene, is a tumor suppressor that exerts its function via inhibiting mitogenic receptors at the plasma membrane. Although multiple mutations in Merlin have been identified in Neurofibromatosis type II (NF2) disease, its molecular mechanism is not fully understood. Here, we show that Merlin interacts with LRP6 and inhibits LRP6 phosphorylation, a critical step for the initiation of Wnt signaling. We found that treatment of Wnt3a caused phosphorylation of Merlin by PAK1, leading to detachment of Merlin from LRP6 and allowing the initiation of Wnt/β-catenin signaling. A higher level of β-catenin was found in tissues from NF2 patients. Enhanced proliferation and migration caused by knockdown of Merlin in glioblastoma cells were inhibited by suppression of β-catenin. Conclusively, these results suggest that sustained Wnt/β-catenin signaling activity induced by abrogation of Merlin-mediated inhibition of LRP6 phosphorylation might be a cause of NF2 disease.

Interaction of Nonreceptor Tyrosine-Kinase Fer and p120 Catenin Is Involved in Neuronal Polarization

  • Lee, Seung-Hye
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.256-262
    • /
    • 2005
  • The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-${\beta}$-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, ${\beta}$-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.