• 제목/요약/키워드: catenin

검색결과 342건 처리시간 0.024초

Anticancer Activity of Taxillus yadoriki Parasitic to Neolitsea sericea against Non-Small Cell Lung Carcinoma

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.93-93
    • /
    • 2019
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of branches from Taxillus yadoriki parasitic to Neolitsea sericea (TN-NS-B) against human lung cancer cells, A549. TY-NS-B dose-dependently suppressed the growth of A549 cells. TY-NS-B decreased ${\beta}$-catenin protein level, but not mRNA level in A549 cells. The downregulation of ${\beta}$-catenin protein level by TY-NS-B was attenuated in the presence of MG132. Although TY-NS-B phosphorylated ${\beta}$-catenin protein, the inhibition of $GSK3{\beta}$ by LiCl did not blocked the reduction of ${\beta}$-catenin by TY-NS-B. In addition, TY-NS-B decreased ${\beta}$-catenin protein in A549 cells transfected with Flag-tagged wild type ${\beta}$-catenin or Flag-tagged S33/S37/T41 mutant ${\beta}$-catenin construct. Our results suggested that TN-NS-B may downregulate ${\beta}$-catenin protein level independent on GSK3${\beta}$-induced ${\beta}$-catenin phosphorylation. Based on these findings, TY-NS-B may be a potential candidate for the development of chemopreventive or therapeutic agents for human lung cancer.

  • PDF

Mechanosensitive β-catenin signaling regulates lymphatic vascular development

  • Cha, Boksik;Srinivasan, R. Sathish
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.403-404
    • /
    • 2016
  • The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development.

Regulatory Effect of Cannabidiol (CBD) on Decreased β-Catenin Expression in Alopecia Models by Testosterone and PMA Treatment in Dermal Papilla Cells

  • Park, Yoon-Jong;Ryu, Jae-Min;Na, Han-Heom;Jung, Hyun-Suk;Kim, Bokhye;Park, Jin-Sung;Ahn, Byung-Soo;Kim, Keun-Cheol
    • 대한약침학회지
    • /
    • 제24권2호
    • /
    • pp.68-75
    • /
    • 2021
  • Objectives: The hair follicle is composed of more than 20 kinds of cells, and mesoderm derived dermal papilla cells and keratinocytes cooperatively contribute hair growth via Wnt/β-catenin signaling pathway. We are to investigate β-catenin expression and regulatory mechanism by CBD in alopecia hair tissues and dermal papilla cells. Methods: We performed structural and anatomical analyses on alopecia patients derived hair tissues using microscopes. Pharmacological effect of CBD was evaluated by β-catenin expression using RT-PCR and immunostaining experiment. Results: Morphological deformation and loss of cell numbers in hair shaft were observed in alopecia hair tissues. IHC experiment showed that loss of β-catenin expression was shown in inner shaft of the alopecia hair tissues, indicating that β-catenin expression is a key regulatory function during alopecia progression. Consistently, β-catenin expression was decreased in testosterone or PMA treated dermal papilla cells, suggesting that those treatments are referred as a model on molecular mechanism of alopecia using dermal papilla cells. RT-PCR and immunostaining experiments showed that β-catenin expression was decreased in RNA level, as well as decreased β-catenin protein might be resulted from ubiquitination. However, CBD treatment has no changes in gene expression including β-catenin, but the decreased β-catenin expression by testosterone or PMA was restored by CBD pretreatment, suggesting that potential regulatory effect on alopecia induction of testosterone and PMA. Conclusion: CBD might have a modulating function on alopecia caused by hormonal or excess of signaling pathway, and be a promising application for on alopecia treatment.

개 피부 흑색종의 MET/RON Receptor Tyrosine Kinases 발현 평가 (Increased Expression of MET and RON Receptor Tyrosine Kinases in Canine Cutaneous Melanotic Tumor)

  • 한재익;김대용;나기정
    • 한국임상수의학회지
    • /
    • 제26권5호
    • /
    • pp.429-432
    • /
    • 2009
  • Cadherin-catenin 복합체의 파괴는 ${\beta}$-catenin 단백질의 발현 위치 이상(세포내 이동)을 유발하며, 일부 receptor tyrosine kinase (RTK)의 활성화가 cadherin-catenin 복합체의 파괴를 유발할 수 있다. 본 연구에서는 ${\beta}$-catenin의 발현 위치 이상을 나타낸 개 피부 흑색종 조직 18개에서 MET/RON RTKs의 발현양을 평가하였다. 실험 결과 총 28%의 종양조직에서 MET/RON RTKs의 발현증가가 관찰되었다. 이 결과는 개 피부 흑색종에서 MET/RON RTKs의 발현증가가 ${\beta}$-catenin의 위치이상에 부분적으로 관여할 가능성을 제시한다.

Anti-cancer Activity of the Leave Extracts of Rodgersia podophylla through β-catenin Proteasomal Degradation in Human Cancer Cells

  • Kim, Jeong Dong;Park, Su Bin;Kim, Ha Na;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.68-68
    • /
    • 2019
  • In this study, we evaluated the effect of Rodgersia podophylla leave extracts (RPL) on ${\beta}$-catenin level in human cancer cells. RPL dose-dependently inhibited cell proliferation in SW480, A549, MDA-MB-231, PC-3 and AsPC-1 cells. RPL dramatically decreased ${\beta}$-catenin protein level in all cancer cells. However, decreased level of ${\beta}$-catenin mRNA expression was observed in A549 and AsPC-1 cells. In addition, RPL dramatically attenuated cyclin D1 mRNA expression in all cancer cells. MG132 decreased the downregulation of ${\beta}$-catenin protein level induced by RPL in all cancer cells, while RPL-induced downregulation of ${\beta}$-catenin was inhibited by the inhibition of $GSK-3{\beta}$ by LiCl in MDA-MB-231 cells. RPL phosphorylated ${\beta}$-catenin and $GSK-3{\beta}$. In addition, the inhibition of $GSK-3{\beta}$ by LiCl attenuated RPL-induced ${\beta}$-catenin phosphorylation. Based on these findings, RPL may be a potential candidate for the development of chemopreventive or therapeutic agents for human cancer.

  • PDF

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • 제33권3호
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.

β-Catenin Alterations in Squamous Cell Carcinoma of the Lip

  • Barakat, Charif
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5187-5190
    • /
    • 2015
  • This study aimed to investigate the correlation between ${\beta}$-catenin immunoexpression and histopathological grades of lower lip squamous cell carcinoma (LSCC). $\beta$-Catenin abnormal expression was found in 29% of the squamous cells of well differentiated LSCC, 63% of moderately differentiated and 86% of poorly differentiated, and therefor was significantly associated with histological grade (p=0.000). Nuclear $\beta$-catenin expression appeared in 5% of the cells and was also correlated with the histological grades (p=0.000). In 14.7% of the cells it was localized in the cytoplasm, again correlating with histology (p=0.002). According to this study the expression of $\beta$-catenin is an independent prognostic factor for histological grade and to the tumor differentiation. This appears to reflect a structural association and the role of $\beta$-catenin in tumor progression.

β-catenin 유전자의 3T3-L1 지방세포 및 인체에서의 지방축적 연관성 연구 (Association of β-Catenin with Fat Accumulation in 3T3-L1 Adipocytes and Human Population)

  • 배성민;이해용;채수안;오동진;박석원;윤유식
    • 생명과학회지
    • /
    • 제21권9호
    • /
    • pp.1301-1309
    • /
    • 2011
  • 비만은 중성지방이 체내에 과잉으로 축적되어 지방 본래의 에너지 저장과 대사조절의 기능을 정상적으로 하지 못하는 상태를 말한다. 본 연구진은 siRNA 방법을 이용하여 Wingless-type MMTV integration site (WNT)/${\beta}$-catenin pathway에 의한 지방축적 조절에서 중요한 역할을 하는 유전자를 확인하고자 하였다. WNT/${\beta}$-catenin pathway에 속한 유전자 중 ${\beta}$-catenin을 siRNA기법을 통하여 knock down 한 후 adipogenesis의 핵심 조절자인 peroxisome proliferator-activated receptor (PPAR)${\gamma}$, CCAAT/enhancer binding protein (C/EBP)${\alpha}$의 mRNA와 단백질 발현 변화를 확인해 보았다. 그 결과 ${\beta}$-catenin유전자의 knock down에 의하여 PPAR${\gamma}$, CEBP${\alpha}$의 유전자 및 단백질 발현이 유의하게 증가함을 확인하였다. WNT/${\beta}$-catenin pathway에서 ${\beta}$-catenin의 상위 조절자인 LRP6와 DVL2의 knock down에 의한 adipogenesis 조절 유무를 분석하였으나 유의적인 영향을 미치지 못하는 것으로 발견되었다. 이는 ${\beta}$-catenin이 상위 조절자들의 영향을 받기 보다는 독립적인 기작으로 PPAR${\gamma}$, CEBP${\alpha}$의 mRNA, 단백질 발현의 조절함으로써 adipogenesis의 negative regulator의 기능을 하는 것으로 판단된다. 또한 290명의 한국인을 대상으로 비만의 대표적인 표지인자인 혈중 중성지방 농도와 혈중 콜레스테롤 농도에 대한 ${\beta}$-catenin 유전자의 단일염기다형성(SNP)과의 연관성을 통계 분석해보았다. 그 결과 프로모터 부분에 위치한 4종류의 SNP 중에서 transcription개시 지점으로부터 -10,288위치에 존재하는 C>T polymorphism인 rs7630377이 유의하게 혈중 중성지방 농도와 연관성이 있음을 확인할 수 있었다. 본 연구의 결과는 ${\beta}$-catenin이 세포 수준에서 뿐 아니라 인체에서도 지방축적에 유의적인 영향을 미치고 있음을 제시하고 있다.

Atractylochromene Is a Repressor of Wnt/β-Catenin Signaling in Colon Cancer Cells

  • Shim, Ah-Ram;Dong, Guang-Zhi;Lee, Hwa Jin;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.26-30
    • /
    • 2015
  • Wnt/${\beta}$-catenin signaling pathway was mutated in about 90% of the sporadic and hereditary colorectal cancers. The abnormally activated ${\beta}$-catenin increases the cancer cell proliferation, differentiation and metastasis through increasing the expression of its oncogenic target genes. In this study, we identified an inhibitor of ${\beta}$-catenin dependent Wnt pathway from rhizomes of Atractylodes macrocephala Koidzumi (Compositae). The active compound was purified by activity-guided purification and the structure was identified as 2,8-dimethyl-6-hydroxy-2-(4-methyl-3-pentenyl)-2H-chromene (atractylochromene, AC). AC suppressed b-catenin/Tcell factor transcriptional activity of HEK-293 reporter cells when they were stimulated by Wnt3a or inhibitor of glycogen synthase kinase-$3{\beta}$. AC down-regulated the nuclear level of ${\beta}$-catenin through the suppression of galectin-3 mediated nuclear translocation of ${\beta}$-catenin in SW-480 colon cancer cells. Furthermore, AC inhibits proliferation of colon cancer cell. Taken together, AC from A. macrocephala might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.