• Title/Summary/Keyword: catenary feeding system

Search Result 26, Processing Time 0.024 seconds

Analysis of Breaking Accident of FRP Insulator Rod installed in Dead Section (절연구간 조가선 FRP 절연봉의 절단사고 원인분석)

  • Jang, Don-Guk;Lee, Ki-Won;Kim, Ju-Rak;Park, Hyun-June
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.502-505
    • /
    • 2003
  • The accidnet of breaking insulator rod leads to inturruption of moving the subway. We investigate the analysis of analysis of breaking accident of FRP insulator rod installed in dead section for catenary feeding system. To analysis of accident reason, SEM is used to analysis microscopic struture on surface of cross section of broken FRP insulator rod. At the same time, we examine the chage of atomic amount on solace of accident insulator through EDX analysis. Also, the test for tensional breaking load is condoled to check the mechanical strength.

  • PDF

The Analysis of 4-Conductors Catenary System of AC Railway Feeding System and Calculation of Induced Voltage near Rail Track using the FDTD Method (교류 전기철도 급전계통 4도체군 전차선로 분석 및 FDTD 방법을 이용한 선로 주변 유도전압 계산에 관한 연구)

  • Ryu, Kyu-Sang;Yeom, Hyoung-Sun;Cho, Gyu-Jung;Lee, Hun-Do;Kim, Cheol-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1958-1964
    • /
    • 2016
  • AC railway feeding system use single phase to supply power to the railway vehicles. And the system use the rail track as a return current path, so that current flows in the rail. In this situation inductive interference on communication system and unsafe environment can appear on railway system. Therefore knowing the current distribution of catenary system and analysing the return current is required. In this study detail return current distribution was analyzed by modeling the catenary system as 4-conductors group. The distribution characteristics and trends of return current were studied by using the PSCAD/EMTDC and FDTD method that based on Maxwell equation was used to calculate the induced voltage. Simulation code was made by MATLAB. Using this study result data, we can suggest the proper installation location of digital device and these data can be used for additional studies related to return current or induced voltage as a base data.

The Effect of Regenerative Energy Storage System on Stabilization of Electro-Pneumatic Braking Blending (회생에너지 저장시스템이 제동 브랜딩 안정화에 미치는 영향)

  • Kim, Kyu-Joong;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • Regenerative Energy Storage System(ESS) is a system that saves regenerative energy which generated instantly in the regenerative braking of Electric Multiple Unit(EMU) and disappear, and reuse the stored energy when EMU is in powering. Such system related to a research field of renewable energy which emerged concerning climate change and high oil prices. In the case of existing domestic rolling stock, about 25% to 30% of generated regenerative energy is restored to power source and is regarded as direct factor of raising catenary voltage. Such rapid change of catenary voltage is a cause of the failure of EMU's electronic equipment and lowering its reliability and is also a cause of train's fault occurred by tripping circuit breaker. In this paper, we intend to investigate the effect on blending characteristics of electric-braking and pneumatic-braking whether the regenerative energy storage system is used or not in urban transit DC 1,500V feeding system, while trains run. And we also intend to investigate its effect on stabilization of the blending, fluctuation of catenary voltage and various electric equipments.

A Study on Durability Standard Specification of the Dropper Clamp of Catenary for High Speed Railway (고속철도 전차선로 드로퍼 클램프 내구성 기준 정립에 관한 연구)

  • Oh, Wan-Shik;Yang, In-Dong;Park, Byung-Gon;Hong, Seok-Jin;Kim, Seong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1431-1436
    • /
    • 2017
  • The high-speed railway of catenary system, supplies a stable electric power supply to the train by satisfying the special conditions between pantograph and trolley wire, which operates more than 250km/h mutually sliding and feeding electric lines. According to Korean Railway Standard KRS PW 0026-13 (R), the standard for the grip strength of the dropper clamp in conventional line is established, but the high-speed railway line is not yet. When the grip strength of the dropper clamp is detached from the catenary line of the high-speed railway line, various problems may occur, such as damage to the pantograph due to the collision and arcing. In this paper, it is expected to be used as a basic data for establishing the durability criteria of the high-speed railway dropper clamp by verifying the dropper clamp on the Gyeong-bu and Honam high-speed line.

Study on the Railway Fault Locator Impedance Prediction Method using Field Synchronized Power Measured Data (실측 동기화 데이터를 활용한 교류전기철도의 고장점표정장치 임피던스 예측기법 연구)

  • Jeon, Yong-Joo;Kim, Jae-chul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Due to the electrification of railways, fault at the traction line is increasing year by year. So importance of the fault locator is growing higher. Nevertheless at the field traction line, it is difficult to locate accurate fault point due to various conditions. In this paper railway feeding system current loop equation was simplified and generalized though measured data. And substation, train power data were measured under synchronized condition. Finally catenary impedance was predicted through generalized equation. Also simulation model was designed to figure out the effect of load current for train at same location. Train current was changed from min to max range and catenary impedance was compared at same location. Finally, power measurement was performed in the field at train and substation simultaneously and catenary system impedance was predicted and calculated. Through this method catenary impedance can be measured more easily and continuously compared to the past method.

Research on Development and Evaluation Tests of Movable Catenary System Using Rigid Bar for DC Feeding System (강체전차선을 이용한 직류전기철도용 이동식 전차선 시스템 개발 및 성능검증에 관한 연구)

  • Park, Seong-Hee;Jang, Dong-Uk;Kang, Seung-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.356-364
    • /
    • 2017
  • The process of inspecting electric railway vehicles is complicated and these vehicles accompany a risk of safety accidents. This developed system will be a great help in simplifying the shunting process and be very useful in terms of ensuring safety and providing user convenience. In this paper, the results of performance evaluation tests are studied on a movable catenary system for railway vehicles that secured mechanical durability, convenience, and operator safety by applying a specific rigid bar catenary of an existing mobile train line. We presented an analysis of the basic characteristics for site installation including sorting. In conclusion, this developed system was obtained in good results through durability test, durable mechanical load test and safety test in require specifications.

A Study on the Voltage Drop and Earth Leakage Current according to Interval of AT in the AT Feeding Method (AT급전방식에서 AT간격에 따른 전압강하 및 대지누설전류에 대한 연구)

  • Kim, Min-Seok;Choe, Seung-Hyuk;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1708-1714
    • /
    • 2011
  • AT feeding system of the electric railway system is installed every about 10km at between the feeder and catenary in parallel and the mid-point of the transformer is connected to the rail The supply voltage of this system is doubled than rolling stock voltage. So the voltage drop is smaller than usual. And the other merit of this system is the decreasing inductive disturbance to the communication line because of the reduced current in rail which runs reversed in a point of view of rolling stock. Also, ATP(Auto Transformer Post) is installed to reduce the voltage drop and to mitigate the inductive disturbance, but still now the proper distance between the ATP and AT feeding system is not established which ranges from 2 to 10[km]. The stable result of simulation(which is set that the end of the line AT is installed) to the voltage drop and inductive disturbance can not analyzes the effect to the supply system due to the ATP. This paper analyzes the effect to the system depending on the location of ATP by forecasting the voltage drop and inductive disturbance.

Harmonic Analysis for Traction Power Supply System with Common Grounding (공동접지방식 급전시스템의 고조파 해석)

  • 오광해;이한민;장동욱;김주락
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.688-695
    • /
    • 2000
  • This study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. Through the research we can conclude the following: - The resonance frequency is not depend on the location of vehicle. The magnification of harmonic is, however, a function of the position of a train. - The resonance frequency is lower as catenary length is longer.

  • PDF

Steady State Analysis for Power System of HSR with Active Transformer

  • Kim, Wook-Won;Kim, Hyung-Chul;Shin, Seung-Kwon;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.257-264
    • /
    • 2016
  • In this paper, new electric railway feeding system which has active transformer is modeled for evaluating the steady state analysis using PSCAD/EMTDC. Equivalent models including power supply, feeder, train and transformers are proposed for simplifying the model of the feeding system in high speed electric railway. In case study, simulation results applied to proposed model are compared with the conventional and new systems through the catenary voltage, three-phase voltage of PCC (Point of Common Coupling) and the efficiency of regenerative braking energy.

The Voltage Drop Compensation of Electric Railway Feeding system using a Fuelcell System (연료전지 시스템을 이용한 전기철도 급전계통 전압강하 보상)

  • Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.342-348
    • /
    • 2015
  • In this paper, fuel cell power generation system that is being studied in recent railway field was applied to compensate for the voltage drop due to the load as driving electric vehicle. PSIM simulation program is to be used to implement the modeling of the electric railway for AC AT feeder system. For it, It was applied to the product-type single-phase PLL algorithm, step-down converter is controlled as power so as to have the fuelcell generation system. Based on it's result, a reactive power due to the catenary impedance in accordance with the current flowing is compensated as linked with fuelcell generation system which supplied the current to the power supply grid. and then its performance was confirmed that voltage compensation effect obtained at SubStation (SS), SubSectioning Post (SSP), Sectioning Post (SP).