• Title/Summary/Keyword: catechol-O-methyltransferases (COMT)

Search Result 2, Processing Time 0.016 seconds

A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways

  • Ye, Lin;Xin, Yang;Wu, Zhi-yuan;Sun, Hai-jian;Huang, De-jian;Sun, Zhi-qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.

Effects of caffeic acid, chlorogenic acid, and EGCG on the methylation status of p16 gene in T-47D breast cancer cells (Caffeic acid, chlorogenic acid, EGCG가 유방암 세포 T-47D의 p16 유전자 DNA methylation에 미치는 영향)

  • Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.522-528
    • /
    • 2007
  • In the present investigation, we studied the modulating effects of caffeic acid, chlorogenic acid, and (-)-epigallocatechin-3-gallate(EGCG) on the methylation status of promoter regions of cell cycle regulator, p16, in human breast cancer T-47D cells. We demonstrated that treatment of T-47D cells with caffeic acid, chlorogenic acid, or EGCG partially inhibited the methylation status of the promoter regions of p16 genes determined by methylation-specific PCR. In contrast, unmethylated p16 genes were increased with the treatment of T-47D cells with $20{\mu}M$ of caffeic acid or chlorogenic acid for 6 days. Treatment of T-47D cells with 5, 20 or $50{\mu}M$ of EGCG increased the unmethylation status of p16 gene up to 100%, and the methylation-specific bands of this gene were decreased up to 50% in a concentration-dependent manner. The finding of present study demonstrated that coffee polyphenols and EGCG have strong inhibitory effects of the cellular DNA methylation process through increased formation of S-adenosyl-homocysteine(SAH) during the catechol-O-methyltransferase (COMT)- mediated O-methylation of these dietary chemicals or an direct inhibition of the DNA methyltransferases. In conclusion, various dietary polyphenols could reverse the methylation status of p16 gene in human breast T-47D cells.