• Title/Summary/Keyword: catechin compound

Search Result 99, Processing Time 0.026 seconds

Supercritical Fluid Extraction of Catecnin Compounds from Green Tea (녹차에서 카테킨 화합물의 초임계 유제 추출)

  • 나영진;이윤우;김재덕;노경호
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.327-331
    • /
    • 2001
  • Catechin compounds from the Green tea cultivated in Bosung (Chollanamdo) were extracted using supercritical fluid and various additives, and analyzed by reversed-phase high performance liquid chromatography (RP-HPLC). The chromatographic column was packed with LiChrospher 100RP-18(15 $\mu$m), and water was used as the mobile phase with 0.05% phosphoric acid and acetonitrile. Gradient election was applied to separate EGCG by changing the mobile phase compositions. Comparing the extraction yield of three different types of supercritical fluids, pure CO$_2$, with additives of water and ethanol (5 wt,%), the extraction amount of EGCG was most abundant in the suprcritical CO$_2$with ethanol. However, more was extracted and pure higher purity was achieved by solvent extraction using ethanol.

  • PDF

Studies on the Antioxidative Substances in the Seeds of Some Theaceae Family (동백(冬柏)을 위시한 차나무과(科) 식물(植物) 종실(種實)에 함유(含有)된 항산화제(抗酸化劑)에 관한 연구(硏究))

  • Kim, Seong-Jin;Choi, Eun-Jin;Lim, Hee-Ryeong;Kim, Tae-Sook;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.35-43
    • /
    • 1991
  • Dried seeds of Camellia japonica and Thea sinensis were investigated to determine the nature of their antioxidative activity. Activity was measured by the induction period in the coupled oxidation of a substrate lard and extracts or isolates to be tested. 70% methanol and dichloromethane extracts were found to be antioxidative abilities. Their unsaponifiables revealed weak antioxidative activity, although hexane extracts did not show antioxidative effect on lard. Column chromatography for dlchloromethane extracts gave 4 fractions(only 2 fractions were potent). HPLC was used in isolating potent antioxidative components from the column fractions and the precolumn-passed methanol extracts. They were separated into 7 and 8 components, respectively. The column fractions obtained from both seeds comprised trans-p-coumaric acid. trans-p-ferulic acid and an unknown component with minor components such as chlorogenic acid and catechin. On the other hand, the most prominent components in the methanol extracts were an unidentified component. trans-pcoumaric acid, trans-p-ferulic acid, catechin and chlorogenic acid. The unknown compound isolated from the column fractions and methanol extracts was identified as epicatechin by $^1H-and\;^{13}C-NMR$. The antioxidative activities of these components were epicatechin > catechin > chlorogenic acid > trans-p-ferulic acid > trans-p-coumaric acid.

Phenolic Compounds and Triterpenes from the Barks of Diospyros burmanica

  • Choi, Janggyoo;Cho, Jae Youl;Kim, Young-Dong;Htwe, Khin Myo;Lee, Woo-Shin;Lee, Jun Chul;Kim, Jinwoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.76-81
    • /
    • 2015
  • Diospyros burmanica Kurz. is an evergreen deciduous tree distributed in Mandalay of Myanmar, which belongs to the family of Ebenaceae. In Myanmar, it has been used to treat diarrhea, diabetes, diabetes and also as lumbers. In this study, seven flavonoids (1 - 7), a phenolic compound (8), and five triterpenes (9 - 13) were isolated from the barks of D. burmanica and their chemical structures were elucidated. Isolates were identified to be (+)-catechin (1), (+)-catechin 3-O-$\alpha$-L-rhamnopyranoside (2), (+)-catechin 3-O-gallate (3), (-)-epicatechin (4), (-)-epicatechin 3-O-gallate (5), (+)-afzelechin 3-O-$\alpha$-L-rhamnopyranoside (6), (+)-2,3-trans-dihydrokaempferol 3-O-$\alpha$-L-rhamnopyranoside (7), methyl gallate (8), lupeol (9), methyl lup-20(29)-en-3-on-28-oate (10), $\beta$-amyrin (11), $\alpha$-amyrin (12), $3\beta$-hydroxy-D:B-friedo-olean-5-ene (13) through MS, 1H NMR and 13C NMR spectroscopic evidences.

Pharmacological Activities of Flavonoids (I) -Relationships of Chemical Structure of Flavonoids and their Inhibitory Activity of Hypersensitivities- (Flavonoids의 약리작용(I) -Flavonoids 구조와 과민반응 억제작용과의 상관성-)

  • Kim, Chang-Johng;Chung, Jin-Mo
    • YAKHAK HOEJI
    • /
    • v.34 no.5
    • /
    • pp.348-364
    • /
    • 1990
  • The activities of twenty-one flavonoids and their related compounds on the hypersensitivity reaction against various antigens were studied in vitro and in vivo. 1. Generally flavonoids inhibited significantly the homologous passive cutaneous anaphylaxis (PCA) induced by reaginic antibody as compared as anaphylaxis by compound 48/80-induced mast cell degranulation, and so more strongly active in the IgE-mediated anaphylaxis than non-IgE-mediated anaphylaxis. 2. Flavonids inhibited remarkably Arths reaction, hemolysin titer, delayed hypersensitivity, haemagglutinin titer, rosette forming cells and plague forming cells against sheep red blood cells, and so it exhibited that flavonoids inhibited type 2, 3 and 4 hypersensitivity. 3. Quercetin, kaempferol, hesperetin, disodium cromoglycate, malvin and baicalein were active dose-dependently in the all types of hypersensitivity. Fisetin, daidzein, morin, narigin, flavone, catechin, rutin, hesperidin, neophsperidin, apigenin and chrysin were significantly active in the various types of hypersensitivity, but apigenin, rutin and catechin were less active in the delayed hypersensitivity. Taxifolin was significantly active in PCA and histamine-induced anaphylaxis except other types of hypersensitivity. Rotenone and cyanin also inhibited all types of hypersensitivity, but they are toxic. 4. Based on these results from hypersensitivity, the following flavonoid structure-activity relationships became apparent. 1) Flavonoids with $C_{2-3}$ double bond in C-ring were more active than that of $C_{2-3}$ saturation. 2) Flavonoids with $C_4$ ketone group in C-ring were more active than abscence of them except catechin and malvin. 3) Flavonoids with benzene ring at positions 2 or 3 in C-ring exhibited same activities. 4) Flavonoids with opening of the C-ring does not abolish their activities. 5) The glycosylated flavonoids in position 3 or 7 was less active than their aglycone. 6) Flavonoids with the more hydroxy group in A and B-ring were more active. 7) Flavonoids with or without $C_3-OH$ did not change their activities.

  • PDF

Effect of Tea Catechin, EGCG (Epigallocatechin Gallate) on Killing of Oral Bacteria (차 카테킨 EGCG (Epigallocatechin Gallate)의 구강세균에 대한 살균효과)

  • Yu Mi-Ok;Chun Jae-Woo;Oh Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.364-366
    • /
    • 2004
  • The purpose of this work was to investigate the effect oftea catechin, epigallocatechin gallate (EGCG) on killing of oral bacteria. The antibacterial activity of 2.5 mg/ml and 5.0 mg/ml EGCG was investigated for target bacteria of which initial cell number was approximately adjusted to $10^{7}ml$. The antibacterial activity of EGCG was proportional to the concentration according to colony-forming unit(CFU) of target bacteria enumerating on selective and complex media. Streptococcus mutans and Streptococcus sobrinus at 5mg/ml EGCG were completely killed within 8 hrs. Lactobacillus plantarum and Lactobacillus acidophilus were also killed within 2 hrs and 4 hrs under the same conditions, respectively. Oral bacteria at 2.5 mg/ml EGCG were completely killed within 10 hr. Colony numvers of S. mitis and S. salivarius treated with 2.5 mg/ml EGCG were decreased on MS solid media and no colony was observed on the media within 12 hrs. In consequence, EGCG would be a natural and effective compound that kill oral bacteria being caused of bad breath, plaque and gingivitis, and for preventing and treating dental caries.

Variation of Bioactive Component Contents in Plant Parts of Paeonia lactiflora Pall. (작약 식물체 부위별 성분 함량 변이)

  • Choung, Myoung-Gun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.5
    • /
    • pp.392-398
    • /
    • 2002
  • Comparative analysis of paeoniflorin, albiflorin and phenolic compound contents as bioactive components of peony was performed by Reverse Phase-High Performance Liquid Chromatography (RPHPLC) using the four- year-old peony which were different plant parts and pretreatment, such as removing or unremoving the cork layer of peony root before drying. The contents of paeoniflorin, albiflorin, (+)-taxifolin $3-O-{\beta}-D-glucopyranoside$, (+)-catechin and (-)-epicatechin were the highest in rhizome part, but those of gallic acid and benzoic acid in the leaves were higher than other parts. The contents of albiflorin, gallic acid, benzoic acid and (-)-epicatechin in the cork layer were higher than in those of the core, but the contents of paeoniflorin, (+)-taxifolin $3-O-{\beta}-D-glucopyranoside$ and (+)-catechin in the core were higher than those in the cork layer. In general, the rhizome part of peony root has been used only propagation purpose, but this part contained high contents of bioactive component. Therefore, it is needed that medicinal application of rhizome part in peony root was firmly investigated. Also, In the use of peony root for medicinal purpose, the use of peony root with cork layer can be efficient way on the practical use of useful components and the reduction of labor for removing the cork layer.

PHENOLOXIDASE AND ANTIOXIDANT IN KOREAN GINSENG (고려인삼에 있어서의 페놀 산화효소의 항산화물질)

  • Park E.Y.;Luh B.S.;Branen A.L.
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.257-275
    • /
    • 1984
  • Enzymatic browning is considered desirable in tea and tobacco processing but undesirable in many fruits processing at the present time. It is necessary to understand the nature of the enzyme, phenoloxidase, in order to control browning reactions, and extend its effects to formation of browning products as antioxidants in ginseng. Ginseng exhibits antioxidant activity when incorporated with turkey dark meat patties. The activity in red ginseng showed about two times stronger than white ginseng. One of the phenolic antioxidants from fresh, white and reprocessed white ginseng was identified as phenol 2.6 Bis(1.1 dimethyl ethyl) 4-methyl among several unknown compounds by GC/mass spectrometer. In red ginseng, no phenol 2.6 Bis (1.1 dimethyl ethyl) 4-methyl was detected, the compound may be polymerized by phenoloxidase and form some higher molecular compounds which may possess high antioxidant activity. Phenoloxidase isozymes in fresh Korean ginseng (panax ginseng C.A. Meyer) were extracted with phosphate buffer at pH 7.3. The isozymes were purified through ammonium sulfate fractionation, dialysis and chromatography on a DEAE-cellulose column. Two groups of phenoloxidase were shown to be present, one in the floating agglomerated group and the other in the precipitate. group from the 0.85 saturation ammonium sulfate. The DEAE-cellulose column chromatography, the phenoloxidase isozyme present in the precipitate appears as the first peak (I), and that in the agglomerate in the second peak (II). Isozyme I showed higher activity with catechin and catechal, and isozyme II showed higher activity with p-cresol. The isozyme showed two optimum pH activity one at pH 4.5 and the other at 8.5 with catechin as substrate. Korean ginseng phenoloxidase has high heat stability. When heated at $75^{\circ}C$ for 2 hours, its activity remained $90\%\;and\;80\%$ on phenoloxidase I and II respectively. Phenoloxidase I was most active on (+) catechin followed by p-cresal, catechol and epicatechin. Phenoloxidase II was most active on p-cresal followed by (+) catechin, catechol, p-coumanic acid and epicatechin. Sodium bisulfite, sodium cyanide, ascorbic acid glutachion in the oxidized form, sodium diethyl dithiocarbomate and ethylendiamine tetra acetate (EDTA) acted as inhibitors. Red ginseng color development was initiated by phenoloxidase and finished by a followed sun drying process. The antiaging activity of ginseng may be initiated by the antioxidant in the ginseng.

  • PDF

Induction of Apoptosis by (-)-epigallocatechin-3-gallate in HL-60 Cells (인체 혈액암세포주(HL-60)에서 (-)-epigallocatechin-3-gallate에 의한 Aapoptosis 유도)

  • 이해미;김연정;박태선
    • Journal of Nutrition and Health
    • /
    • v.36 no.4
    • /
    • pp.382-388
    • /
    • 2003
  • (-)-Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound found in peen tea leaves, and has been known to be one of the most potent catechin species which inhibits cell growth most possibly through an apoptotic cell death. We investigated the apoptotic activity of (-)-EGCG on the human myeloid leukemia cell line, HL-60. Our results of MTT test indicated that (-)-EGCG had a significant antiproliferation effect in HL-60 cells with $IC_{50}$/ (50% inhibition concentration) value of 65 $\mu$M. Giemsa statining of HL-60 cells treated with (-)-EGCG (100 $\mu$M) for 6hrs showed a typical apoptosis-specific morphological change including shrinkage of the cytoplasm, membrane blobbing and compaction of the nuclear chromatin. The DNA fragmentation was observed from the agarose gel electrophoresis of cells treated with (-)-EGCG for 3hrs or longer, and was progressed to a greater degree as treatment time increases. Treatment of the cells with (-)-EGCG (100 $\mu$M) resulted in a rapid release of mitochondrial cytochrome c into the cytosol, and a subsequent cleavage of caspase-3 to an active form in a treatment-time dependent manner. (-)-EGCG (100 $\mu$M) also stimulated proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP) to an active form in HL-60 cells. Tlken together, (-)-EGCG appears to induce the apoptosis in human myeloid leukemia cells via a caspase-dependent pathway. These results suggest the possible application of (-)-EGCG, the major active compound in green tea, as an antiproliferative agent for cancer prevention.

Biological Activities on Phenolic Compounds of Japanese anise (Illicium anisatum L) Extracts

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.120-125
    • /
    • 2019
  • In this paper, we have isolated six phenolic compounds, such as (+)-catechin (1), taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-xylose (3), quercetin (4), quercetin-3-O-${\alpha}$-L(+)-rhamnose (quercitrin) (5), apigenin-8-C-rhamnosyl-(1'''${\rightarrow}$2'')-glucoside (2''-O-rhamnosylvitexin) (6) from the EtOAc(Ethyl Acetate) and $H_2O$ soluble fractions of Japanese anise(Illicium anisatum L) leaves and twigs. Also, we have evaluated antioxidative and antiviral activity for each isolated compound. The antioxidative test was DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. According to the experimental results, all of the isolated compounds indicated the increased radical scavenging activities as the concentration increases and most of the isolated compounds indicated generally good antioxidative values compare to the controls, ascorbic acid and ${\alpha}$-tocopherol. In the antiviral activities, all of the isolated compounds had no potentials in rhinovirus 1B (HRV 1B). But in enterovirus 71 (EV 71) and Influenza virus A/PR/8 (Influenza PR8), only quercetin (4) indicated the good antiviral activity compare to the control. Based on the above results, we found that the phenolic compounds of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Antioxidant Flavonoids from the Twigs of Stewartia koreana

  • Lee, Sa-Im;Yang, Jae-Heon;Kim, Dae-Keun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • In the course of screening for antioxidant compounds by measuring the radical scavenging effect on 1,1-diphenyl- 2-picrylhydrazyl (DPPH), a total extract of the twigs of Stewartia koreana (Theaceae) was found to show potent antioxidant activity. Subsequent activity-guided fractionation of the methanolic extract led to the isolation of six phenolic compounds, ampelopsin (1), catechin (2), proanthocyanidin-A2 (3), fraxin (4), (2R, 3R)-taxifolin-3-${\beta}$-D-glucopyranoside (5), and (2S, 3S)-taxifolin-3-${\beta}$-D-glucopyranoside (6), as active principles. Their structures were elucidated by spectroscopic studies. Compounds 1-6 were isolated for the first time from this plant. Among them, three compounds 1-3 showed the significant antioxidative effects on DPPH, and riboflavin originated superoxide quenching activity. In riboflavin-nitrobluetetrazolium (NBT)-light system, compound 1 showed better superoxide quenching activity than vitamin C.