• Title/Summary/Keyword: catalytic subunit

검색결과 141건 처리시간 0.033초

Haemophilus influenzae의 Acetohydroxyacid Synthase Catalytic Subunit 재조합 단백질 발현 및 특성 (Purification and Characterization of Recombinant Acetohydroxyacid Synthase Catalytic Subunit in Haemophilus influenzae)

  • 노경미;최경재;박준식;윤문영
    • 미생물학회지
    • /
    • 제43권1호
    • /
    • pp.19-22
    • /
    • 2007
  • Acetohydroxylacid synthase (E.C.2.2.1.6.,AHAS)는 박테리아, 곰팡이, 식물 등에서 필수 아미노산중 세 가지 아미노산(Val, Leu, Ile)의 생합성에 관여하는 효소중 하나이다. Haemophilus influenzae에 대한 AHAS의 효소특성을 규명하기 위하여 H. influenzae의 AHAS catalytic subunit 유전자(TIGR access code HI2585)를 pET28a 발현 벡터에 삽입시켰고, 대장균 BL21(DE3)에서 C-말단에 일련의 histidine을 갖는 재조합 단백질로 발현시켰고, Histidine-tag affinity chromatography 및 gel filtration chromatography를 이용하여 단일 단백질로 정제하였다. 정제하여 얻은 단백질은 최대 15 mg/ml까지 농축이 가능하였다. 정제된 단백질의 분자량은 SDS-PAGE 전기 영동법을 이용하여 약 63.9 kDa의 분자량을 확인하였다. AHAS 효소 활성은 discontinuous colorimetric assay방법을 이용하여 측정하였다. H. influenzae AHAS catalytic subunit의 specific activity는 3.22 U/mg 이었다. 또한AHAS의 최적 활성 온도와 pH는 각각$37^{\circ}C$와 pH 7.5이었다. AHAS 효소 활성은buffer의 종류에 따라 차이가 있었으며, 유기용매가 증가함에 따라 효소 활성도 감소하였다.

Application of Adenovirus-Mediated Human Telomerase Catalytic Subunit(hTERT) Gene Promoter in Ovarian Cancer Gene Therapy

  • Song, Joon-Seok;Yoon, Won-Suck;Lee, Kyu-Wan;Kim, Mee-Hye;Kim, Kyung-Tai;Kim, Hy-Sook;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.517-521
    • /
    • 2003
  • Telomerase is a ribonucleoprotein complex whose function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, telomerase RNA template (hTR) and catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. In this report, the possibility of utilization of the hTERT promoter in targeted cancer gene therapy was tested. The hTERT promoter was cloned in the replacement of the CMV promoter, and the HSV-TK gene was subcloned to be controlled by the hTERT gene promoter in the adenovirus shuttle plasmid. Then, the recombinant adenovirus Ad-hT-TK was constructed and was infected into normal and human gynecological cancer cell lines. The selective tumor specific cell death by Ad-hT-TK was identified through these experiments, showing that Ad-hT-TK could be used for targeted cancer gene therapy.

Cloning and Characterization of the Catalytic Subunit of Human Histone Acetyltransferase, Hat1

  • Chung, Hyo-Young;Suh, Na-Young;Yoon, Jong-Bok
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.484-491
    • /
    • 1998
  • Acetylation of lysine residues within the aminoterminal domains of the core histones plays a critical role in chromatin assemhly as well as in regulation of gene expression. To study the biochemical function of histone acetylation, we have cloned a cDNA encoding the catalytic subunit of human histone acetyltransferase, Hat1. Analysis of the predicted amino acid sequence of human Hat1 revealed an open reading frame of 419 amino acids with a calculated molecular mass of 49.5 kDa and an isoelectric point of 5.5. The amino acid sequence of human Hat1 is homologous to those of known and putative Hat1 proteins from various species throughout the entire open reading frame. The recombinant human Hat1 protein expressed in bacteria possesses histone H4 acetyltransferase activity in vitro. Both RbAp46 and RbAp48, which participate in various processes of histone metabolism, enhance the histone acetyltransferase activity of the recombinant human Hat1, indicating that they are both able to functionally interact with the human Hat1 in vitro.

  • PDF

Antiproliferative Effects of Crocin in HepG2 Cells by Telomerase Inhibition and hTERT Down-Regulation

  • Noureini, Sakineh Kazemi;Wink, Michael
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2305-2309
    • /
    • 2012
  • Crocin, the main pigment of Crocus sativus L., has been shown to have antiproliferative effects on cancer cells, but the involved mechanisms are only poor understood. This study focused on probable effect of crocin on the immortality of hepatic cancer cells. Cytotoxicity of crocin ($IC_{50}$ 3 mg/ml) in hepatocarcinoma HepG2 cells was determined after 48 h by neutral red uptake assay and MTT test. Immortality was investigated through quantification of relative telomerase activity with a quantitative real-time PCR-based telomerase repeat amplification protocol (qTRAP). Telomerase activity in 0.5 ${\mu}g$ protein extract of HepG2 cells treated with 3 mg/ml crocin was reduced to about 51% as compared to untreated control cells. Two mechanisms of inhibition, i.e. interaction of crocin with telomeric quadruplex sequences and down regulation of hTERT expression, were examined using FRET analysis to measure melting temperature of a synthetic telomeric oligonucleotide in the presence of crocin and quantitative real-time RT-PCR, respectively. No significant changes were observed in the $T_m$ telomeric oligonucleotides, while the relative expression level of the catalytic subunit of telomerase (hTERT) gene showed a 60% decrease as compared to untreated control cells. In conclusion, telomerase activity of HepG2 cells decreases after treatment with crocin, which is probably caused by down-regulation of the expression of the catalytic subunit of the enzyme.

Functional Analysis of MCNA, a Gene Encoding a Catalytic Subunit of Calcineurin, in the Rice Blast Fungus Magnaporthe oryzae

  • Choi, Jin-Hee;Kim, Yang-Seon;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2009
  • Magnaporthe oryzae, the causal agent of rice blast, forms a specialized infection structure, called an appressorium, which is crucial for penetration and infection of the host plant. Pharmacological data suggest that calcium/calmodulindependent signaling is involved in appressorium formation in this fungus. To understand the role of the calcium/calmodulin-activated protein phosphatase on appressorium formation at the molecular level, MCNA, a gene encoding the catalytic subunit of calcineurin, was functionally characterized in M. oryzae. Transformants expressing sense/antisense RNA of MCNA exhibited significant reductions in mycelial growth, conidiation, appressorium formation, and pathogenicity. cDNA of MCNA functionally complemented a calcineurin disruptant strain (cmp1::LEU2 cmp2::HIS3) of Saccharomyces cerevisiae. These data suggest that calcineurin A plays important roles in signal transduction pathways involved in the infection-related morphogenesis and pathogenicity of M. oryzae.

Random Sequence Analysis of the Genomic DNA of Methanopyrus kandleri and Molecular Cloning of the Gene Encoding a Homologue of the Catalytic Subunit of Carbon Monoxide Dehydrogenase

  • Shin, Hyun-Seock;Ryu, Jae-Ryeon;Han, Ye-Sun;Choi, Yong-Jin;Yu, Yeon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.404-413
    • /
    • 1999
  • Methanopyrus kandleri is a hyperthermophilic methanogen that represents one of the most heat-resistant organisms: the maximum growth temperature of M. kandleri is $110^{\circ}C$. A random sequence analysis of the genomic DNA of M. kandleri has been performed to obtain genomic information. More than 200 unique sequence tags were obtained and compared with the sequences in the GenBank and PIR databases. About 30% of the analyzed tags showed strong sequence similarity to previously identified genes involved in various cellular processes such as biosynthesis, transport, methanogenesis, or metabolism. When statistics relating to the frequency of codons were examined, the sequenced open reading frames showed highly biased codon usage and a high content of charged amino acids. Among the identified genes, a homologue of the catalytic subunit of carbon monoxide dehydrogenase (CODH) that reduces $CO_2$ to CO was cloned and sequenced in order to examine its detailed gene structure. The cloned gene includes consensus promoters. The amino acid sequence of the cloned gene shows a strong homology with the CODH genes from methanogenic Archaea, especially in the presumed binding sites for Fe-S centers.

  • PDF

DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair

  • Ye-Rim Lee;Gi-Sue Kang;Taerim Oh;Hye-Ju Jo;Hye-Joon Park;G-One Ahn
    • Molecules and Cells
    • /
    • 제46권4호
    • /
    • pp.200-205
    • /
    • 2023
  • DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family is a well-known player in repairing DNA double-strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to the severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in an attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.

트립토판 합성효소 잔기 치환체의 효소성질 결함에 대한 분석 (Analysis of Mutant Tryptophan Synthases with Defective Enzymatic Properties)

  • 김일;신혜자;김한도;임운기
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.252-254
    • /
    • 2004
  • $\alpha$소단위체 56번 잔기가 치환된 돌연변이 (D56E/G/N) 트립토판 합성효소의 효소활성도는 매우 낮다. 이러한 돌연변이 효소에 $\alpha$$\beta$소단위체 특이 리간드를 처리하여 그 영향을 조사하였다. 양이온은 야생종과 잔기치환체에 다른 흡광도를 보여주었다. 반면, glycerophosphate는 모두 비슷한 양상의 흡광도를 보여주고 있다. glycerophosphate는 $\alpha$소단위체의 활성부위에 결합함으로 $\alpha$소단위체에 기질이 결합된 반응 단계에서는 56번 잔기가 $\alpha$$\beta$소단위체간의 이소조절에 관여하지 않고 있음을 시사한다. 따라서, 잔기 56번 치환 효소는 $\alpha$소단위체로부터 기질이 떨어진 이후에 일어나는 반응 단계에 결함이 있는 것으로 추정된다.