• Title/Summary/Keyword: catalytic effect

Search Result 827, Processing Time 0.026 seconds

Protective Effect of Genistein and Korean Fermented Soybean (Chungkookjang) Extract against Benzo(a)pyrene Induced DNA Damage in HepG2 Cells (Benzo(a)pyrene 유도 DNA 손상에 대한 Genistein과 청국장추출물의 보호효과)

  • Song, Eun-Jeong;Kim, Hyun-Pyo;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.376-383
    • /
    • 2008
  • Chungkookjang (CKJ) is a fermented soybean product and one of favorite traditional foods in Korea. In this study, the alcoholic extract from Korean fermented soybean (CKJ) and its one of major flavonoids, genistein were evaluated for their protective effect against B(a)P induced cytotoxicity and DNA damage in HepG2 cells. CKJ extract and genistein decreased B(a)P-induced cell cytotoxicity. CKJ extract inhibited DNA single strand breaks evaluated by single cell gel electrophoresis. From RT-PCR study, it was revealed that CKJ extract decrease DNA damage induced in HepG2 cells expressing CYP1A1 and 1A2 by B(a)P. The metabolizing activities of CYP1A1 and CYP1A2, as measured by the 7-alkoxy resorufin O-deethylation (AROD) assay, showed that CKJ extract and genistein inhibited CYP1A1 and CYP1A2 activities. Genistein may contribute to these biological effects of CKJ extract at least in part. All these results indicate that CKJ extract and genistein may be useful for protection against B(a)P-induced cytotoxicity and DNA damage. Therefore, the alcoholic extract of Korean fermented soybean (CKJ) is suggested to be promising functional food which can prevent the cellular genotoxicity of dietary and lifestyle related carcinogens.

Effect of Ca Ion on the SCR Reaction over VOx/TiO2 (Ca 이온이 VOx/TiO2 SCR 반응에 미치는 영향 연구)

  • Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • In this study, we investigated the cause of the decrease in activities of $VO_x/TiO_2$ SCR catalyst used for the burner reactor at a scale of $150000Nm^3/hr$ using X-ray diffraction (XRD), brunauer-emmett-teller (BET), atomic emission spectroscopy inductively coupled plasma (AES ICP), $H_2$ temperature programmed reduction ($H_2$-TPR), and $NH_3$ temperature programmed desorption ($NH_3$-TPD) analysis. Since the crystallization of the $VO_x$ and phase transition of $TiO_2$ did not occur, it was concluded that the catalyst was not deactivated by the thermal effect. In addition, from the elemental analysis showing that a large quantity of calcium was detected but not sulfur, the deactivation process of the $VO_x/TiO_2$ SCR catalyst was mainly caused by Ca but not by $SO_2$. The calcium was also found to decrease the catalytic activity by means of reducing $NH_3$ adsorption.

A Study on the Effect of Vehicle Emission on Gasoline Property (휘발유 물성조성에 따른 자동차 배출가스 영향 연구)

  • Lim, Jae-Hyuk;Lee, Jin-Hong;Kim, Ki-Ho;Lee, Min-Ho
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.51-57
    • /
    • 2018
  • In Korea, the Air Quality Conservation Act and the Petroleum and Petroleum Substitute Fuel Business Act stipulate certain quality standards for fuels distributed in Korea, thereby striving to reduce vehicle performance and emissions. Domestic petroleum products import and produce all the crude oil from each oil refiner so that the quality of the petroleum product is different according to the characteristics of the crude oil. As a result, vehicles have been improved by using the physical properties calculated through the physical property measurement that has tried to improve the accuracy of the measurement of the energy consumption efficiency of the automobile by using standard fuel from abroad. In this study, the same test procedure and method as the test method of domestic gasoline vehicle emission are applied using four samples of gasoline and the latest gasoline vehicle which are actually distributed, and the performance evaluation is performed. The purpose of this study is to contribute to improvement of vehicle technology and fuel quality by collecting necessary basic data and obtaining data on the effect of differences in gasoline property on vehicle emissions. The results of the test showed that the emission of gases (NMOG, CO) from gasoline vehicles was the most influenced by the sulfur content, unlike the previous studies that the vehicles emission had the greatest influence on the distillation characteristics and the specific gravity of aromatic compounds. The catalytic reaction such as the poisoning action of the three-way catalyst which is the abatement device was interfered and the emission was increased. The distillation characteristics and specific gravity of aromatic compounds were found to affect the emission of vehicles. According to the physical properties of the fuel, the emission difference was 28.0% in the urban mode and 17.6 % in the highway mode.

Gas Phase Thernal cis-trans Isomerization Reaction of 1-Bromopropene

  • Huh, D- Sung;Um, Jae-Young;Yun, Sun-Jin;Choo, Kwang-Yul;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.391-395
    • /
    • 1990
  • The kinetics of thermnal cis-trans isomerization reaction of 1-bromopropene(1-BP) was studied at temperatures from 620.8 to 753.15 K over the pressure range 0.17-50.3 Torr. Both the inhibition effect by cyclohexene or propene and the catalytic effect by HBr showed a radical process as the main mechanism of the isomerization. In the suppression of the radical process by the inhibitors, the molecular process also contributed to overall reaction rate. The reactions demonstrated the first order kinetics under both uninhibited and inhibited conditions and could be represented by the expressions (R = 1.987 cal/mol/K) $k_{un}/s^{-1} = (3.45{\pm}1.50){\times}10^{11}$exp$[(- 48100{\pm}2000)/RT]\;k_{ink}/s^{-1} = (2.98{\pm}1.40){\times}10^{12}$exp$[(- 55800{\pm}1800)/RT]$> where $k_{un}$ is the observed rate constant of cis-1-bromopropene(1-B$P_c$) to trans-1-bromopropene(1-B$P_t$) under uninhibited condition at initial pressure of 50 Torr and $k_{ink}$ is the rate constant under maximal inhibition by cyclohexene. The ratio of rate constants for bromine atom elimination from the allylic hydrogen of reactant(1-BP) and from the inhibitors, propene and cyclohexene, were measured from the observed rates of the uninhibited and inhibited reactions. The inhibition efficiencies of cyclohexene and propene were compared kinetically from the rate constants and shown to give good agreement with the previous results reported from other alkyl bromide pyrolyses.

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

Effect of Pretreatment of Biogenic Titanium Dioxide on Photocatalytic Transformation of Chloroform (Biogenic TiO2 나노입자 전처리가 클로로포름 광분해에 미치는 영향)

  • Kwon, Sooyoul;Rorrer, Greg;Semprini, Lewis;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • Photocatalysis using UV light and catalysts is an attractive low temperature and non-energy- intensive method for remediation of a wide range of chemical contaminants like chloroform (CF). Recently development of environmental friendly and sustainable catalytic systems is needed before such catalysts can be routinely applied to large-scale remediation or drinking water treatment. Titanium dioxide is a candidate material, since it is stable, highly reactive, and inexpensive. Diatoms are photosynthetic, single-celled algae that make a microscale silica shell with nano scale features. These diatoms have an ability to biologically fabricate $TiO_2$ nanoparticles into this shell in a process that parallels nanoscale silica mineralization. We cultivated diatoms, metabolically deposited titanium into the shell by using a two-stage photobioreactor and used this biogenic $TiO_2$ to this study. In this study we evaluated how effectively biogenic $TiO_2$ nanoparticles transform CF compared with chemically-synthesized $TiO_2$ nanoparticlesthe and effect of pretreatment of diatom-produced $TiO_2$ nanoparticles on photocatalytic transformation of CF. The rate of CF transformation by diatom-$TiO_2$ particles is a factor of 3 slower than chemically-synthesized one and chloride ion production was also co-related with CF transformation, and 79~91% of CF mineralization was observed in two $TiO_2$ particles. And the period of sonication and mass transfer due to particle size, evaluated by difference of oxygen tention does not affect on the CF transformation. Based on the XRD analysis we conclude that slower CF transformation by diatom-$TiO_2$ might be due to incomplete annealing to the anatase form.

Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures (백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

Pd/Pd3Fe Alloy Catalyst for Enhancing Hydrogen Production Rate from Formic Acid Decomposition: Density Functional Theory Study (개미산 분해 반응에서 수소 생산성 증대를 위한 Pd/Pd3Fe 합금 촉매: 범밀도 함수 이론 연구)

  • Cho, Jinwon;Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Ham, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.270-274
    • /
    • 2017
  • Formic acid has been known as one of key sources of hydrogen. Among various monometallic catalysts, hydrogen can be efficiently produced on Pd catalyst. However, the catalytic activity of Pd is gradually reduced by the blocking of active sites by CO, which is formed from the unwanted indirect oxidation of formic acid. One of promising solutions to overcome such issue is the design of alloy catalyst by adding other metal into Pd since alloying effect (such as ligand and strain effect) can increase the chance to mitigate CO poisoning issue. In this study, we have investigated formic acid deposition on the bimetallic $Pd/Pd_3Fe$ core-shell nanocatalyst using DFT (density functional theory) calculation. In comparison to Pd catalyst, the activation energy of formic acid dehydrogenation is greatly reduced on $Pd/Pd_3Fe$ catalyst. In order to understand the importance of alloying effects in catalysis, we decoupled the strain effect from ligand effect. We found that both strain effect and ligand effect reduced the binding energy of HCOO by 0.03 eV and 0.29 eV, respectively, compared to the pure Pd case. Our DFT analysis of electronic structure suggested that such decrease of HCOO binding energy is related to the dramatic reduction of density of state near the fermi level.

Effect of the Preparation Method on the Activity of CeO2-promoted Co3O4 Catalysts for N2O Decomposition (촉매 제조방법에 따른 Co-CeO2 촉매의 N2O 분해 특성 연구)

  • Kim, Hye Jeong;Kim, Min-Jae;Lee, Seung-Jae;Ryu, In-Soo;Yi, Kwang Bok;Jeon, Sang Goo
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.198-205
    • /
    • 2018
  • This study investigated the influence of catalyst preparation on the activity of $Co-CeO_2$ catalyst for $N_2O$ decomposition. $Co-CeO_2$ catalysts were synthesized by co-precipitation and incipient wetness impregnation. In order to estimate the performance of the as prepared catalysts, direct catalytic $N_2O$ decomposition test was carried out under $250{\sim}375^{\circ}C$. As a result, the catalyst prepared by co-precipitation (CoCe-CP) showed an enhanced performance on $N_2O$ decomposition reaction even in the presence of $O_2$ and/or $H_2O$, whereas the impregnation catalyst (CoCe-IM) did not. In order to investigate the difference in catalytic activity, characterization such as XRD, BET, TEM, $H_2-TPR$, $O_2-TPD$, and XPS was conducted. It is confirmed that the particle size and specific surface area were changed depending on the catalyst preparation method and the synthesis process influenced the physical properties of the catalysts. In addition, the improvement in the activity of the catalyst prepared by co-precipitation is due to the enhanced reduction from $Co^{3+}$ to $Co^{2+}$ and the improved oxygen desorption rate. However, it has been confirmed that the surface electron state and binding energy, which are related to $N_2O$ decomposition, do not change depending on the preparation method.