• Title/Summary/Keyword: catalytic effect

Search Result 827, Processing Time 0.033 seconds

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Synthesis of Au-Decorated TiO2 Nanotubes on Patterned Substrates for Selective Gas Sensor (선택적 가스 센서를 위한 Au 나노입자가 장식된 TiO2 나노튜브의 합성)

  • Kim, Do Hong;Shim, Young-Seok;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.305-309
    • /
    • 2014
  • Well-ordered $TiO_2$ nanotubes with Au nanoparticles are a desirable configuration to enhance the gas sensing properties such as response and selectivity due to their high surface area to volume ratio and catalytic effect of Au nanoparticles. We have synthesized the well-ordered $TiO_2$ nanotubes directly on a Pt IDEs patterned $SiO_2/Si$ substrate and then decorated Au nanoparticles on inner and outer surface of $TiO_2$ nanotubes using electrodeposition method. The Au-decorated $TiO_2$ nanotubes shows ultrahigh response to $C2_H_5OH$ and the highest increasing ratio to $H_2$ compared with other gases.

Characteristics of Toluene Destruction by Non-thermal Plasma in Packed with Catalyst Reactor (촉매가 충진된 플라즈마 반응기에서의 Toluene 제거특성)

  • 한소영;송영훈;차민석;김석준;최경일;신동준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • Destruction process of toluene using a wire-cylindrical BBD (Dielectric Barrier Discharge) reactor packed with catalysts was investigated to characterize the synergetic effects of non-thermal plasma and catalyst process. The catalysts used in the present study were ${\gamma}$-Al$_2$BO$_3$ and Pt/${\gamma}$-Al$_2$O$_3$. Under the numerous test conditions, specific energy density (SED (J/L)) and the conversion of toluene, defined as (1 -[C$_{f}$]/[C$_{i}$]), were measured. The test results showed that toluene decomposition efficiency followed the pseudo-first order in the case of plasma only process. The pseudo-first order process, however, was modified to pseudo-zeroth order reaction in the case of catalyst-assisted plasma process. This modification of the reaction order was verified based on a simple kinetic model proposed in the present study. Owing to the modification of reaction order, which resulted from the catalytic process, the specific energy to achieve the high removal efficiencies, i.e. 80~90%, was reduced significantly.y.y.

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Cloning, Expression, and Characterization of a Thermostable GH51 ${\alpha}-\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22

  • Lee, Sun Hwa;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.236-244
    • /
    • 2014
  • The gene encoding ${\alpha}-\small{L}$-arabinofuranosidase (AFase) from Paenibacillus sp. DG-22 was cloned, sequenced, and expressed in Escherichia coli. The AFase gene (abfA) comprises a 1,509 bp open reading frame encoding 502 amino acids with a molecular mass of 56,520 daltons. The deduced amino acid sequence of the gene shows that AbfA is an enzyme consisting of only a catalytic domain, and that the enzyme has significant similarity to AFases classified into the family 51 of the glycosyl hydrolases. abfA was subcloned into the pQE60 expression vector to fuse it with a six-histidine tag and the recombinant AFase (rAbfA) was purified to homogeneity. The specific activity of the recombinant enzyme was 96.7 U/mg protein. Determination of the apparent molecular mass by gel-filtration chromatography indicated that AbfA has a tetrameric structure. The optimal pH and temperature of the enzyme were 6.0 and $60^{\circ}C$, respectively. The enzyme activity was completely inhibited by 1 mM $HgCl_2$. rAbfA was active only towards p-nitrophephenyl ${\alpha}-\small{L}$-arabinofuranoside and exhibited $K_m$ and $V_{max}$ values of 3.5 mM and 306.1 U/mg, respectively. rAbfA showed a synergistic effect in combination with endoxylanase on the degradation of oat spelt xylan and wheat arabinoxylan.

The Effects of Zeolite Structure and Ion-exchange Material on NH3-SCR Reaction (제올라이트 종류 및 이온교환 물질에 따른 NH3-SCR 촉매 반응 특성)

  • Hwang, Inhye;Lee, Junho;Kim, Hongsuk;Jeong, Youngil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.135-141
    • /
    • 2014
  • $NH_3$-SCR has high NOx removal efficiency approximately 80~90%. Recently, the copper or iron ion-exchanged zeolite catalysts are widely used as automobile SCR catalysts. In this paper, the effect of the space velocity, temperature of reaction and $NO_2$ addition on the $NH_3$-SCR reaction were studied using various zeolite SCR catalysts. The test was conducted with small sized fresh catalysts in a laboratory fixed-bed flow reactor system using simulated gases. It is found that the activity of the BEA is better than MFI. It seems that three-dimensional framework and a wide pore entrance of BEA enhances the SCR activity. It is also found that low temperature activity of Cu-zeolites was better than Fe-zeolites. Once $NO_2$ was added, the NOx conversion activity of the Cu-zeolite was slightly enhanced, whereas remarkable improvement was achieved by Fe-zeolite.

The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame (산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과)

  • Lee, Chang-Yeop;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

Croton hirtus L'Hér Extract Prevents Inflammation in RAW264.7 Macrophages Via Inhibition of NF-κB Signaling Pathway

  • Kim, Min Jeong;Kim, Ju Gyeong;Sydara, Kong Many;Lee, Sang Woo;Jung, Sung Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.490-496
    • /
    • 2020
  • Consumption of anti-inflammatory nutraceuticals may help treat or prevent inflammation-related illnesses such as diabetes, cardiovascular disease, and cancer. This study evaluated the effect of Croton hirtus L'Hér extract (CHE) on lipopolysaccharide (LPS)-induced nitric oxide (NO) production and nuclear factor kappa-B (NF-κB) signaling cascades. CHE significantly suppressed LPS-induced NO production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 macrophages, although cyclooxygenase (COX)-2 expression was not affected. CHE also suppressed LPS-induced IκB kinase (IKK), IκB, and p65 phosphorylation in RAW264.7 cells. Western blot and immunofluorescence assays of cytosol and nuclear p65 and the catalytic subunit of NF-κB showed that CHE suppressed LPS-induced p65 translocation from the cytosol to the nucleus. CHE also suppressed LPS-induced Interleukin (IL)-6 and tumor necrosis factor (TNF)-α production in RAW264.7 cells. These results suggest that CHE prevents NO-mediated inflammation by suppressing NF-κB and inflammatory cytokines.

A Study on the Conversion Performance of Lean NOx Trap for a 4-stroke Diesel Engine (4기통 디젤엔진에서의 Lean NOx Trap 촉매 정화 특성에 관한 연구)

  • Han, Joon-Sup;Oh, Jung-Mo;Lee, Ki-Hyung;Lee, Jin-Ha
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.78-83
    • /
    • 2011
  • Diesel engine has many advantages such as high thermal efficiency, low fuel consumption and low emission of CO2. However, the diesel engine faced with strengthened emission regulation about NOx and PM. To suppress NOx emission, after-treatment systems such as Lean NOx Trap (LNT), Selective Catalytic Reduction (SCR) are considered as a more practical strategy. This paper investigated the performance of Lean NOx trap of the 4 stroke diesel engine which had a LNT catalyst. Characteristic of exhaust emission at NEDC mode was analyzed. From this result, the effect of nozzle attaching degree, injection quantity and gas flow change on NOx conversion performance was clarified.

A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine (대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구)

  • Jeong, Soo-Jin;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.