• Title/Summary/Keyword: catalytic effect

Search Result 827, Processing Time 0.025 seconds

A Metal Enhanced Flow-Injection Chemiluminescence Method for the Rapid Determination of Norfloxacin in Pharmaceutical Formulations and Serum Sample

  • Kamruzzaman, Mohammad;Ferdous, Taslima;Alam, Al-Mahmnur;Lee, Sang-Hak;Kim, So-Yeun;Kim, Young-Ho;Kim, Sung-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.639-644
    • /
    • 2011
  • A simple and highly sensitive chemiluminescence method to determine norfloxacin (NFLX) has been proposed by measuring the chemiluminescence (CL) intensities using a flow injection (FI) system. The CL intensity of the luminol-$H_2O_2$ system is strongly enhanced by the addition of Cu (II) in alkaline condition. The CL intensity is substantially increased after the injection of NFLX into the luminol-$H_2O_2$-Cu (II) system. The enhancement effect is attributed to a catalytic effect of Cu (II) due to the interaction with NFLX which forms a complex with the catalyst. Under the optimal conditions, the sensitizing effect of the CL intensity is proportional to the concentration of NFLX in the range of $1.5{\times}10^{-9}-5.9{\times}10^{-7}molL^{-1}$ (r = 0.9994) with a detection limit ($3{\sigma}$) of $2.98{\times}10^{-10}molL^{-1}$. The proposed method had good reproducibility with the relative standard deviation (RSD, n = 5) of 1.6% for $1{\times}10^{-7}molL^{-1}$ of NFLX. The possible reaction mechanism of the CL reaction is also discussed. This method has been successfully applied for the determination of trace amount of NFLX in pharmaceutical preparations and serum samples.

Antioxidative Characteristics of Melanoidin Related Products Fractionated from Fermented Soybean Sauce (양조간장에서 분리한 멜라노이딘 관련물질의 항산화 작용 특성)

  • 최홍식;이정수;이창용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.570-575
    • /
    • 1993
  • Antioxidative characteristics of melanoidin related products(MRPs) fractionated from fermented soybean sauce were studied during the oxidation process of model systems. MRPs were prepared from soybean sauce fermented for 6 months after inoculation Aspergillus oryzae by the fractionation through the Sephadex G-10 column and the freeze drying of collected fractions. MRPs inhibited the formation of peroxides during the oxidation of linoleic acids mixture in ethanolic phosphate buffer solution at $50^{\circ}C$ with the increasing tendency by their concentration in reaction systems. MRPs had hydrogen doner properties during the reaction with ${\alpha},\;{\alpha}'-diphenyl-{\beta}-picrylhydrazyl$ and also MRPs inhibited the iron and lipoxygenase catalytic oxidation. MRPs were found to be fairly stable with no loss of antioxidative effect after storage at $50^{\circ}C$ for 15days.

  • PDF

Study on the Effect of Iron-based Metal Catalysts on the Thermal Decomposition Behavior of ABS (Iron계 금속 촉매가 ABS의 열분해 거동에 미치는 영향에 관한 연구)

  • Jang, Junwon;Kim, Jin-Hwan;Bae, Jin-Young
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.496-501
    • /
    • 2005
  • The thermal degradation of ABS in the presence of iron-based metal catalysts has been studied by thermogravimetric analysis (TGA). The reaction of iron-based metal catalysts (ferric nitrate nonahydrate, ammonium ferric sulfate dodecahydrate, iron sulfate hydrate, ammonium ferric oxalate, iron(II) acetate, iron(II) acetylacetonate and ferric chloride) with ABS has been found to occur during the thermal degradation of ABS. In a nitrogen atmosphere, char formation was observed, and at $600^{\circ}C$ approximately 3~23 wt% of the reaction product was non-volatile char. The resulting enhancement of char formation in a nitrogen atmosphere has been primarily due to the catalytic crosslinking effect of iron-based metal catalysts. On the other hand, char formation of ABS in air at high temperature by iron-based metal catalyst was unsuccessful due to the oxidative degradation of the char.

Electrocatalytic Effect on the Oxygen Reduction and Electrochemical Properties of Co(Ⅱ)-dimethyl Bipyridine Perchlorate (Co(Ⅱ)$(dimethyl bipyridine)_3(ClO_4)_2$의 전기화학적 성질과 산소환원에 대한 전극 촉매 효과)

  • Kim, Il Kwang;Park, Chong Sool;Han, Wan Soo;Kim, Youn Keun;Jeon, Il Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.385-391
    • /
    • 1997
  • Diffusion Coefficient$(D_0)$ and electrode reaction rate Constant$(K_0)$ of Co$(dimethyl bipyridine)_3(ClO_4)_2$ were determined by cyclic voltammetry and chronoamperometry. It was also investigated that the effects of solvent, concentration, and scan rate, etc. on the diffusion coefficient and the temperature effect on the rate constant. The peak currents and diffusion coefficients were dcreased as increasing the viscosity of solvent. Diffusion coefficient was $5.54{\times}10^{-6 }cm^2/sec$ and the reaction rate constant was $2.39{\times}10^{-3 }/s$ at 25$^{\circ}C$. The thermodynamic parameters such as ${\Delta}G^{\neq},\;{\Delta}H^{\neq},\;and\;{\Delta}S$ were calculated from plotting the reaction rate constants versus the solution temperatures. This compound was shown the catalytic effect on the oxygen reduction that the reduction peak current of oxygen was greatly enhanced and the peak potential was shifted to +0.2 volt.

  • PDF

Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction (NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향)

  • Park, Ji Hye;Cho, Gwang Hee;Hwang, Ra Hyun;Baek, Jeong Hun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.

Effect of Purified Green Tea Catechins on Cytosolic Phospholipase $A_2$ and Arachidonic Acid Release in Human Gastrointestinal Cancer Cell Lines

  • Hong, Jung-Il;Yang, Chung-S.
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.799-804
    • /
    • 2006
  • Ingestion of green tea has been shown to decrease prostaglandin $E_2$ levels in human colorectum, suggesting that tea constituents modulate arachidonic acid metabolism. In the present study, we investigated the effects of four purified green tea catechins, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epigallocatechin-3-gallate (EGCG), and (-)-epicatechin-3-gallate (ECG), on the catalytic activity of cytosolic phospholipase $A_2$ ($cPLA_2$) and release of arachidonic acid and its metabolites from intact cells. At $50\;{\mu}M$, EGCG and ECG inhibited $cPLA_2$ activity by 19 and 37%, respectively, whereas EC and EGC were less effective. The inhibitory effects of these catechins on arachidonic acid metabolism in intact cells were much more pronounced. At $10\;{\mu}M$, EGCG and ECG inhibited the release of arachidonic acid and its metabolites by 50-70% in human colon adenocarcinoma cells (HT-29) and human esophageal squamous carcinoma cells (KYSE-190 and 450). EGCG and ECG also inhibited arachidonic acid release induced by A23187, a calcium ionophore, in both HT-29 and KYSE-450 cell lines by 30-50%. The inhibitory effects of green tea catechins on $cPLA_2$ and arachidonic acid release may provide a possible mechanism for the prevention of human gastrointestinal inflammation and cancers.

Fabrication of NiS Thin Films as Counter Electrodes for Dye-Sensitized Solar Cells using Atomic Layer Deposition

  • Jeong, Jin-Won;Kim, Eun-Taek;Park, Su-Yong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.276.2-276.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSCs) are promising candidates for light-to-energy conversion devices due to their low-cost, easy fabrication and relative high conversion efficiency. An important component of DSCs is counter electrode (CE) collect electrons from external circuit and reduct I3- to I-. The conventional CEs are thermally decomposed Pt on fluorine-doped tin oxide (FTO) glass substrates, which have shown excellent performance and stability. However, Pt is not suitable in terms of cost effect. In this report, we demonstrated that nickel sulfide thin films by atomic layer deposition (ALD)-using Nickel(1-dimethylamino-2-methyl-2-butanolate)2 and hydrogen sulfide at low temperatures of $90-200^{\circ}C$-could be good CEs in DSCs. Notably, ALD allows the thin films to grow with good reproducibility, precise thickness control and excellent conformality at the angstrom or monolayer level. The nickel sulfide films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, hall measurements and cyclic voltammetry. The ALD grown nickel sulfide thin films showed high catalytic activity for the reduction of I3- to I- in DSC. The DSCs with the ALD-grown nickel sulfide thin films as CEs showed the solar cell efficiency of 7.12% which is comparable to that of the DSC with conventional Pt coated counter electrode (7.63%).

  • PDF

Preparation and Characterizations of Titania Nanotube Thin Films (티타니아 나노튜브(TNT) 박막의 제조 및 특성에 관한 연구)

  • Lee, Youngrok;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.652-656
    • /
    • 2011
  • Thin film of titania nanotubes(TNT) and titania nanofilms(TNF) was fabricated by anodizing for the study of the photo-catalytic reaction(PC) and photoelectrocatalytic reaction(PEC). Removal efficiency of methylene blue was investigated by UV radiation on the TNT coated titanium plate. Removal efficiency was increased with longer TNT length. Degradation efficiency of the PEC reaction was less sensitive than that of PC reaction. And Effect of TNT length is relatively small. Titania nanofilms(TNF) showed low efficiency than TNT. The efficiency drop of PC was larger than that of PEC.

A Study on the Catalytic Property of Pt/γ-Al2O3 on the Dehydrocyclization of Paraffins (포화탄화수소의 탈수소고리화 반응에 관한 촉매특성 연구)

  • Lee, Santg-Hwa;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.569-575
    • /
    • 1993
  • The addition of Sn to Pt/${\gamma}$-$A1_2O_3$ catalyst greatly enhanced the activity and decreased the deactivation rate for the dehydrocyclization of paraffins. For the dehydrocyclization of n-octane, there appeared to be an optimal ratio of Pt:Sn=1:4 for 0.75 wt% Pt/${\gamma}$-$A1_2O_3$ catalyst. The addition of K to Pt/${\gamma}$-$A1_2O_3$ also produced a similar effect on the dehydrocyclization of n-hexane. In the case of n-octane, the addition of K led to a less selective catalyst.

  • PDF

SI Engine Hydrocarbon Emissions Reduction with Secondary Air Injection and Coolant Control (2차 공기분사 및 냉각수제어에 의한 SI 엔진의 탄화수소 배기저감)

  • 박기수;조영진;박심수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • It is well known that the majority of the emissions measured from vehicle exhaust in the US Federal Test Procedure(FTP-75) are emitted during the first 60 seconds. This paper describes an experimental study on SI engine emissions reduction after cold start with interval secondary air injection and coolant control. Secondary air injection after cold start to reduce exhaust emissions causes an exothermic reaction at the exhaust port and gives sufficient air to the catalyst. For that reason engine-out emissions oxidized in the exhaust port and the rapid heating of a catalytic converter after cold start with CSAI and ISAI are estimated. The influence of the coolant temperature on SI engine emissions has been estimated. In the present studycoolant control of the cylinder head tempeature is used to investigate the effect of coolant temperature on SI engine emissions. The results show that engine-out hydrocarbon and carbon monoxide emissions are considerably reduced with interval secondary air injection and coolant control.

  • PDF