• Title/Summary/Keyword: catalyst layer

Search Result 357, Processing Time 0.021 seconds

Properties of CNT field effect transistors using top gate electrodes (탑 게이트 탄소나노튜브 트랜지스터 특성 연구)

  • Park, Yong-Wook;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.313-318
    • /
    • 2007
  • Single-wall carbon nanotube field-effect transistors (SWCNT FETs) of top gate structure were fabricated in a conventional metal-oxide-semiconductor field effect transistor (MOSFET) with gate electrodes above the conduction channel separated from the channel by a thin $SiO_{2}$ layer. The carbon nanotubes (CNTs) directly grown using thin Fe film as catalyst by thermal chemical vapor deposition (CVD). These top gate devices exhibit good electrical characteristics, including steep subthreshold slope and high conductance at low gate voltages. Our experiments show that CNTFETs may be competitive with Si MOSFET for future nanoelectronic applications.

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Effects of Selective Growth on Electron-emission Properties of Conical-type Carbon Nanotube Field-emitters (원추형 기판 위에 탄소 나노튜브의 선택적 성장이 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Noh, Young-Rok;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • In this study, for use of carbon nanotubes (CNTs) as a cold cathode of x-ray tubes, we examine the effects of selective growth of CNTs on their field emission properties and long-term stability. The selective growth of CNTs was performed by selectively etching the catalyst layer which was used for CNTs' nucleation. CNTs were grown on conical-type tungsten substrates using an inductively-coupled plasma chemical vapor deposition system. For all the grown CNTs, their morphologies and microstructures were analyzed by field-emission scanning electron microscope and Raman spectroscopy. The electron-emission properties of CNTs and the long-term stability of emission currents were measured and characterized according to the CNTs' growth position on the substrate.

Photo-catalytic Properties of TiO2 Nanotube Arrays Sensitized with In2S3 under Visible-light Irradiation

  • Kim, Hyun;Yang, Bee Lyong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.221-223
    • /
    • 2015
  • In this work, we report on the preparation of the anodically-grown $TiO_2$ nanotube arrays sensitized with $In_2S_3$ nanoparticles by using the SILAR (successive ionic layer adsorption and reaction) process. We evaluate the photo-catalytic properties of the prepared hetero-structures under visible-light illumination. The results reveal that the $TiO_2/In_2S_3$ system has enhanced photo-catalytic characteristics including higher chopping height. Improved performance of the heterojunction is attributed to the narrower band gap of $In_2S_3$ and its favorable position within the conduction band relative to that of $TiO_2$.

Effects of Additives and Hot-Pressing Conditions on the Surface and Performance of MEAs for PEMFCs (첨가제를 이용한 촉매슬러리 조성 안정화 및 열-압착 공정 최적화 통한 PEMFC용 MEA 개발)

  • Jang, Hyun-Sook;Cho, Eun-Ae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.398-404
    • /
    • 2010
  • Process conditions for MEA fabrications have significant effects on properties and performance of the MEAs for PEMFCs. In this study, effects of additives on the surface properties of the MEA was investigated to improve homogeneity of the coated catalyst layer. Another parameter that affects on characteristics of the MEAs is hot-pressing condition. Hot pressing condition was optimized by using DOE (design of experiment) method.

Effect of the supporting substrate on the production yield for geometrically controlled carbon coils

  • Park, Se-Mi;Kim, Sung-Hoon;Jeon, Young-Chul;Kim, DongUk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.218-219
    • /
    • 2012
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Prior to the carbon coils deposition reaction, two kinds of samples having different combination of Ni catalyst and substrate were employed, namely a commercially-made $Al_2O_3$ ceramic boat with Ni powders and a commercially-made $Al_2O_3$ substrate with Ni layer. By using a commercially-made $Al_2O_3$ ceramic boat, the production yield of carbon coils could be enhanced as much as 10 times higher than that of $Al_2O_3$ substrate. Furthermore, the dominant formation of the microsized carbon coils could be obtained by using $Al_2O_3$ ceramic boat.

  • PDF

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

EFFECTS OF NITROGEN AND CARBON ION IMPLANTATION INTO AUSTENITIC STAINLESS STEEL ON HYDROGEN ABSORPTION

  • Terashima, K.;Minegishi, T.;Matsusaka, K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.494-497
    • /
    • 1996
  • The effect of implanted nitrogen and carbon ion into SUS 304 on the absorption of hydrogen by cathodic chaging were studied. Implantations of $N^+$, $C^+$ were performed with doses of $3\times10^{17}$ ions $\textrm{cm}^2$ and $5\times10^{17}N^+cm^2$, and $5\times10^{17}C^+cm^2$, at an energy of 90 keV. Nitrides and carbide were investigatedby X-ray diffraction, Auger electron spectroscopy (AES) and scanning electron microscope (SEM). Formation of hydrides during cathodic charging were depressed by a modified surface layer. It is concluded that the both nitrides and carbides act as the barrier of hydrogen migration and the catalyst of desorption of cathodically charged hydrogen.

  • PDF

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF