• 제목/요약/키워드: catalase

검색결과 2,064건 처리시간 0.031초

Accumulation of Selenium and Changes in the Activity of Inulinase and Catalase in the Cells of Kluyveromyces marxianus on Pulsed Electric Field Treatment

  • Pankiewicz, Urszula;Jamroz, Jerzy
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권7호
    • /
    • pp.1101-1106
    • /
    • 2010
  • Pulsed electric field (PEF) of 1Hz, 1.5 kV, and 1ms increased the activities of catalase and inulinase over the whole range of applied Se concentrations compared with the non-treated cultures. A significant effect of selenium concentration (in the range of 5-14 ${\mu}g/ml$) on both intra- and extracellular enzyme activities was noted. At a Se concentration of 10 ${\mu}g/ml$, the activities of intra- and extracellular inulinases and extracellular catalase in the PEF-treated cultures reached the maximum of 71 U/g d.m., 46 U/g d.m., and approx. 8 U/ml, respectively. The maximum activity of intracellular catalase of approx. 6 U/ml (with and without PEF) was recorded at 5 ${\mu}g$ Se/ml. Further increasing of selenium concentration caused a decrease in the activity of the enzymes.

제초제인 Paraquat가 SAM의 간조직에서 항산화효소의 활성 및 지질과산화에 미치는 영향 (Effects on Lipid Peroxidation and Antioxidants of Paraquat in the Liver of Senescence-Accelerated Mouse(SAM))

  • 양미경;박문숙
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.8-17
    • /
    • 1999
  • This research employed a senescence-accelerated mouse(SAM) to explore the possibility that differences exist among the major antioxidatns, lipid peroxidation in terms of ability to protect such animal treatment PQ, SAM-R/1 and SAM-P/8 were administered with PQ(200ppm/Kg) orally. The toxicity of PQ on SAM was determined as a bioassays of SOD, catalase and lipid peroxidation in the mouse liver. The data show that the SOD activity was induced by paraqwuat terement in both SAM-R/1 and SAM-P/8. The degree of lipid peroxidation was increased with PQ treatment. This means that SOD rather than catalase may protect against oxygen radical toxicity. Finally, over data lead to the toxicity of PQ and its function may efect to the antioxidants including SOD, catalase and lipid peroxidation in both SAM-R/1 and SAM-P/8 .

  • PDF

막분리 공정을 이용한 과산화수소 함유 폐액처리용 카탈라제 생산 (Catalase Production by Membrane Process for Treatment of Industrial Wastewater Containing Hydrogen Peroxide)

  • 허병옥;이동철;신현재
    • KSBB Journal
    • /
    • 제18권3호
    • /
    • pp.186-189
    • /
    • 2003
  • 본 연구는 Aspergillus niger 폐포자를 이용하여 과산화수소를 함유한 폐액처리용 효소제조 공정개발에 그 목표가 있다. 본 카탈라제 (catalase) 생산 공정은 미세여과(0.2 $\mu\textrm{m}$ microfiltration)와 한외여과 (300 KDa, 50 KDa, ultrafiltration)의 순차적인 막 여과 방식을 통하여 효소액을 회수하는 것을 특징으로 한다. 초기 폐포자와 완충액의 희석비는 1 : 5였으며 막분리 공정의 수율은 90% 이상이었다. 얻어진 카탈라제 용액의 최적 온도는 4$0^{\circ}C$, 최적 PH는 5-8 영역이었다.

Biodegradation of Hydrogen Peroxide in Semiconductor Industrial Wastewater with Catalase from Micrococcus sp.

  • Oh, Sung-Hoon;Yu, Hee-Jong;Kim, Moo-Sung;So, Sung;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • 제7권1호
    • /
    • pp.33-36
    • /
    • 2002
  • A catalase from Micrococcus sp. isolated from soil was applied to degrade hydrogen Peroxide in wastewater from a semiconductor industry. The degradation rates of hydrogen peroxide increased with increasing reaction time and catalase concentrations in the reaction mixture. However, in the presence of aluminum chloride or chloride oxide used in detergent compounds, the degradation rate of hydrogen peroxide was not affected. Enzyme stabilizers and antifoam did not affect the degradation rates of hydrogen peroxide.

생쥐에서 N-Nitrosodiethylamine에 의한 산화성 스트레스에 대한 Lutein의 항산화효과 (Antioxidant Effect of Lutein on N-Nitrosodiethylamine-induced Oxidative Stress in Mice)

  • 최병철;심상수
    • 약학회지
    • /
    • 제53권4호
    • /
    • pp.189-193
    • /
    • 2009
  • To investigate the antioxidant effect of lutein on N-nitrosodimethylamine (NDEA)-induced oxidative stress in mice, we measured lipid peroxidation, superoxide dismutase (SOD) and catalase of various tissues. Body weight was almost similar in lutein and control groups during 3 weeks. NDEA increased significantly the activities of typical marker enzymes of liver function (AST, ALT and ALP) in both groups. However, the increase of plasma aminotransferase activity significantly decreased in lutein group. Lipid peroxidation and SOD in various tissues, such as heart, lung, liver, kidney, spleen and plasma were significantly increased by NDEA, which were significantly reduced by lutein at a dose of 50 mg/kg. Catalase activity decreased significantly in control and lutein groups treated with NDEA, the effect being less in lutein group. Lesser effect on SOD and catalase in NDEA-treated lutein group indicates the improvement of protective mechanisms by lutein. Thus, it can be concluded from the present study that lutein can offer a useful protection against NDEA-induced oxidative stress.

Enzyme Activities Related to the Methanol Oxidation of Mycobacterium sp. strain JCl DSM 3803

  • Youngtae Ro;Kim, Eungbin;Kim, Youngmin
    • Journal of Microbiology
    • /
    • 제38권4호
    • /
    • pp.209-217
    • /
    • 2000
  • Mycobacterium sp. strain JCl DSM 3803 grown in methanol showed no methanol dehydrogenase or oxidase activities found in mast methylotrophic bacteria and yeasts, respectively. Even though the methanol-grown cells exhibited a little methanol-dependent oxidation by cytochrome c-dependent methanol dehydrogenase and alcohol dehydrogenase, they were not the key enzymes responsible for the methanol oxidation of the cells, in that the cells contained no c-type cytochrome and the methanol oxidizing activity from the partially purified alcohol dehydrogenase was too low, respectively. In substrate switching experiments, we found that only a catalase-peroxidase among the three types of catalase found in glucose-grown cells was highly expressed, in the methanol-grown cells and that its activity was relatively high during the exponential growth phase in Mycobacterium sp. JCl. Therefore, we propose that catalase-peroxidase is an essential enzyme responsible for the methanol metabolism directly Of indirectly in Mycobacterium sp. JCl.

  • PDF

감마선 조사전 홍삼추출물 투여가 생쥐 신장에서 항산화 효소활성과 지질과산화 수준에 미치는 영향 (The Effects of Red Ginseng Extracts on Antioxidant Enzyme Activities and Lipid Peroxidation of the Kidney in ${\gamma}$-Postirradiated Mice)

  • 김동조;장재철
    • Journal of Ginseng Research
    • /
    • 제18권1호
    • /
    • pp.25-31
    • /
    • 1994
  • The effects of red ginseng extracts (5.5 mg/mouse: i.p.) on the activities of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and lipid peroxidation were studied in the cytosol fraction of kidney. The experiments were carried out with whole-body irradiated (6.0 Gy, $^{60}Co$) and non-irradiated ICR mice. In the red ginseng extract-treated and irradiated mice, the activities of Cu, Zn- SOD, Mn-SOD, catalase and peroxidase were significantly enhanced by 27.8, 31.9, 17.9 and 15.0%, respectively, but the contents of malondialdehyde were considerably decreased (81.OfS) after 21 days, compared with those of non-treated mice. The enhanced activities of antioxidant enzymes inhibited the increase of malondialdehyde product resulted from the ionizing radiation. These results suggest that red ginseng extracts probably play an important role in radioprotective effect. Key words Red ginseng, SOD, catalase, peroxidase, lipid peroxidation.

  • PDF

The Effect of Metallothionein on the Activity of Enzymes Invelved in Remival of Reactive Oxygen Species

  • 고문주;김희정
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권4호
    • /
    • pp.362-366
    • /
    • 2001
  • To show the effects of metallothionein (MT) on the activity of enzymes involved in the removal of reactive oxygen species, MT has been added to the assay systems of superoxide dismutase (SOD), catalase and peroxidase. We have used assay systems of SOD based on NADPH oxidation and nitrite formation from hydroxylammonium chloride as an assay of superoxide breakdown rate. The two assay systems showed different results at the high concentration of MT. MT showed the scavenging of superoxide in the SOD assay system in the presence and absence of SOD. MT added to the SOD assay system behaved as an activator of SOD, but apo-MT behaved as an inhibitor. When MT was added to the assay system in the presence of a fixed amount of SOD, the breakdown rate of superoxide increased. The effects of MT on the decomposition of hydrogen peroxide and the activity of catalase and peroxidase decomposing hydrogen peroxide were evaluated. MT decreased the activities of catalase and peroxidase. We have concluded that the function of MT as an antioxidant might effect the level of superoxide scavenging and not the level of hydrogen peroxide.

Endogenous catalase delays high-fat diet-induced liver injury in mice

  • Piao, Lingjuan;Choi, Jiyeon;Kwon, Guideock;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.317-325
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and $PGC1{\alpha}$ mRNA expression were decreased in both CKO and WT mice at HFD feeding, $GSK3{\beta}$ phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

Antioxidant Effects of Gamma-oryzanol on Human Prostate Cancer Cells

  • Klongpityapong, Papavadee;Supabphol, Roongtawan;Supabphol, Athikom
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5421-5425
    • /
    • 2013
  • Background: To assess the antioxidant effects of gamma-oryzanol on human prostate cancer cells. Materials and Methods: Cytotoxic activity of gamma-oryzanol on human DU145 and PC3 prostate cancer cells was determined by proliferation assay using 3-(4, 5-dimethylthiazol, 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reagent. mRNA levels of genes involved in the intracellular antioxidant system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GSR) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cancer cell lysates were used to measure lipid peroxidation using thiobarbituric acid reactive substance (TBARS). Glutathione contents of the cell lysates were estimated by the reaction between sulfhydryl group of 5, 5'-dithio (bis) nitrobenzoic acid (DTNB) to produce a yellow-color of 5-thio-2-nitrobenzoic acid using colorimetric assay. Catalase activity was also analysed by examining peroxidative function. Protein concentration was estimated by Bradford's assay. Results: All concentrations of gamma-oryzanol, 0.1-2.0mg/ml, significantly inhibited cell growth in a dose- and time-dependent fashion in both prostate cancer cell lines, DU145 and PC3. Gene expression of catalase in DU145 and PC3 exposed to gamma-orizanol at 0.5mg/ml for 14 days was down regulated, while mRNA of GPX was also down regulated in PC3. The MDA and glutathione levels including catalase activity in the cell lysates of DU145 and PC3 treated with gamma-oryzanol 0.1 and 0.5mg/ml were generally decreased. Conclusions: This study highlighted effects of gamma-oryzanol via the down-regulation of antioxidant genes, catalase and GPX, not cytotoxic roles. This might be interesting for adjuvant chemotherapy to make prostate cancer cells more sensitive to free radicals. It might be useful for the reduction of cytotoxic agents and cancer chemoprevention.