• Title/Summary/Keyword: catA cloning

Search Result 31, Processing Time 0.02 seconds

Isolation and Characterization of Transcriptional Elements from Corynebacterium glutamicum

  • Park, Soo-Dong;Lee, Sang-Nam;Park, Ik-Hyun;Choi, Jong-Su;Jeong, Wol-Kyu;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.789-795
    • /
    • 2004
  • A promoter-probe shuttle vector pSK1Cat was constructed for the isolation of transcriptional signal sequences from Corynebacterium glutamicum. Besides conferring resistance to kanamycin in Escherichia coli and C. glutamicum, the vector carried a promoterless cat gene to confer resistance to chloramphenicol upon insertion of the appropriate transcriptional signals in the multiple cloning site. By utilizing the vector, a series of transcriptionally active fragments were isolated from the genome of C. glutamicum. The clones, ranging from 200 bp to 1 kb in size, were grouped into 3 classes of strong, medium, and weak, based on the chloramphenicol acetyltransferase (CAT) activity and sensitivity to the chloramphenicol of the clone-carrying C. glutamicum cells. C. glutamicum cells carrying the $P_{19}$ clone, a representative in the strong class, were able to grow on minimal agar plates containing over $40 mg/mell$ chloramphenicol, and showed CAT activity of 10 m㏖/mgㆍmin, performing slightly better than the cells carrying $P_{tac}$ , a strong E. coli promoter. Subcloning analysis of the $P_{19}$ clone identified a 180 bp intergenic fragment ($P_{180}$), which was located upstream of a gene encoding a hypothetical membrane protein. The expression conferred by $P_{180}$ was not affected by either the kinds of carbon sources or changes in temperature. These properties make the $P_{180}$ clone useful for the deregulated expression of biosynthetic genes in C. glutamicum during amino acid fermentation.

Reprogramming of Cloned Embryos During Early Embryogenesis (초기 발생에 있어서 복제수정란의 리프로그래밍)

  • Han, Yong-Mahn;Kang, Yong-Kook;Koo, Deog-Bon;Lee, Kyung-Kwang
    • 대한생식의학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.11-17
    • /
    • 2002
  • Animal clones derived from somatic cells have been successfully produced in a variety of mammalian species such as sheep, cattle, mice, goats, pigs, cat and rabbits. However, there are still many unsolved problems in the present cloning technology. Somatic cell nuclear transfer has shown several developmental aberrancies including high rate of abortion in early gestation and increased perinatal death. These developmental failures of cloned embryos may arise from abnormal reprogramming of donor genome and/or incomplete cloning procedure. We have found that overall genomic methylation status of cloned bovine embryos is quite different from that of normal embryos in various genomic regions, suggesting that the developmental failures of cloned embryos may be due to incomplete reprogramming of donor genomic DNA. Many of the advances in understanding the molecular events for reprogramming of donor genome will more clarify the developmental defects of cloned embryos.

  • PDF

Cloning, Expression, Purification, and Properties of an Endoglucanase Gene (Glycosyl Hydrolase Family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris

  • Pham, Thi Hoa;Quyen, Dinh Thi;Nghiem, Ngoc Minh;Vu, Thu Doan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1012-1020
    • /
    • 2011
  • A gene coding for an endoglucanase (EglA), of the glycosyl hydrolase family 12 and derived from Aspergillus niger VTCC-F021, was cloned and sequenced. The cDNA sequence, 717 bp, and its putative endoglucanase, a 238 aa protein with a predicted molecular mass of 26 kDa and a pI of 4.35, exhibited 98.3-98.7% and 98.3-98.6% identities, respectively, with cDNA sequences and their corresponding endoglucanases from Aspergillus niger strains from the GenBank. The cDNA was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 1.59 U/ml culture supernatant, after 72 h of growth in a YP medium induced with 1% (v/v) of methanol. The molecular mass of the purified EglA, determined by SDS-PAGE, was 33 kDa, with a specific activity of 100.16 and 19.91 U/mg toward 1% (w/v) of ${\beta}$-glucan and CMC, respectively. Optimal enzymatic activity was noted at a temperature of $55^{\circ}C$ and a pH of 5. The recombinant EglA (rEglA) was stable over a temperature range of $30-37^{\circ}C$ and at pH range of 3.5-4.5. Metal ions, detergents, and solvents tested indicated a slightly inhibitory effect on rEglA activity. Kinetic constants ($K_m$, $V_{max}$, $k_{cat}$, and $k_{cat}/K_m$) determined for rEglA with ${\beta}$-glucan as a substrate were 4.04 mg/ml, 102.04 U/mg, 2,040.82 $min^{-1}$, and 505.05, whereas they were 10.17 mg/ml, 28.99 U/mg, 571.71 $min^{-1}$, and 57.01 with CMC as a substrate, respectively. The results thus indicate that the rEglA obtained in this study is highly specific toward ${\beta}$-glucan. The biochemical properties of rEglA make it highly valuable for downstream biotechnological applications, including potential use as a feed enzyme.

Enhancement of cis,cis-Muconate Productivity by Overexpression of Catechol 1,2-Dioxygenase in Pseudomonas putida BCM114

  • Kim, Beum-Jun;Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.112-114
    • /
    • 1998
  • For enhancement of cis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion to cis,cis-muconate) was cloned and expressed in recombinant Pseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM), cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the cae of wild-type P. putida BM014, whereas cis,cis-muconate productivity continuously increased and catechol was completely transformed to cis,cis-muconate for P. putida BCM114. Specific C12O activity of P. putida BCM114 was about three times higher than that of P. putida BM014, and productivity was enhanced more than two times.

  • PDF

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.

Cloning, Expression, and Characterization of a Cold-Adapted Shikimate Kinase from the Psychrophilic Bacterium Colwellia psychrerythraea 34H

  • Nugroho, Wahyu Sri Kunto;Kim, Dong-Woo;Han, Jong-Cheol;Hur, Young Baek;Nam, Soo-Wan;Kim, Hak Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2087-2097
    • /
    • 2016
  • Most cold-adapted enzymes possess higher $K_m$ and $k_{cat}$ values than those of their mesophilic counterparts to maximize the reaction rate. This characteristic is often ascribed to a high structural flexibility and improved dynamics in the active site. However, this may be less convincing to cold-adapted metabolic enzymes, which work at substrate concentrations near $K_m$. In this respect, cold adaptation of a shikimate kinase (SK) in the shikimate pathway from psychrophilic Colwellia psychrerythraea (CpSK) was characterized by comparing it with a mesophilic Escherichia coli homolog (EcSK). The optimum temperatures for CpSK and EcSK activity were approximately $30^{\circ}C$ and $40^{\circ}C$, respectively. The melting points were $33^{\circ}C$ and $45^{\circ}C$ for CpSK and EcSK, respectively. The ${\Delta}G_{H_2O}$ (denaturation in the absence of denaturing agent) values were 3.94 and 5.74 kcal/mol for CpSK and EcSK, respectively. These results indicated that CpSK was a cold-adapted enzyme. However, contrary to typical kinetic data, CpSK had a lower $K_m$ for its substrate shikimate than most mesophilic SKs, and the $k_{cat}$ was not increased. This observation suggested that CpSK may have evolved to exhibit increased substrate affinity at low intracellular concentrations of shikimate in the cold environment. Sequence analysis and homology modeling also showed that some important salt bridges were lost in CpSK, and higher Arg residues around critical Arg 140 seemed to increase flexibility for catalysis. Taken together, these data demonstrate that CpSK exhibits characteristics of cold adaptation with unusual kinetic parameters, which may provide important insights into the cold adaptation of metabolic enzymes.

Gene Cloning and Enzymatic Properties of Thermostable Laccase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 laccase의 유전자 클로닝 및 효소학적 특성)

  • Lee, So-Young;Jung, Young-Hoon;Seo, Min-Ho;Jeon, Sung-Jong
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.257-262
    • /
    • 2012
  • The gene encoding Thermus thermophilus HJ6 laccase (Tt-laccase) was cloned, sequenced, and comprised of 1,389 nucleotides encoding a protein (462 amino acids) with a predicted molecular mass of 51,049 Da. The deduced amino acid sequence of Tt-laccase showed 99.7% and 44.3% identities to the Thermus thermophilus HB27 laccase and Synechococcus sp. RS9917 laccase, respectively. Tt-laccase gene was expressed as a fusion protein with six histidine residues in E. coli Rosetta-gami (DE3) cells, and the recombinant protein was purified to homogeneity. UV-Vis spectrum analysis revealed that the enzyme has copper atoms, a type I Cu(II) and a type III binuclear Cu(II). The optimum pH for the oxidation of guaiacol was 5.0 and the optimum temperature was $90^{\circ}C$ The half-life of heat inactivation was about 120 min at $90^{\circ}C$ The enzyme reaction was inhibited by sodium azide, L-cystein, EDTA, dithiothreitol, tropolone, and kojic acid. The enzyme oxidized various known laccase substrates, its lowest $K_m$ value being for 4-hydroxyindole, highest $k_{cat}$ value for syringaldazine, and highest $k_{cat}/K_m$ for guaiacol.

Cloning and Expression of Escherichia coli Ornithine Transcarbamylase Gene, argI (Escherichia coli 오르니틴 트란스카바밀라제의 유전자 argI의 클로닝 및 발현)

  • Riu, Key-Zung;U, Zang-Kual;Ko, Young-Hwan;Kim, Chan-Shik;Song, Sung-Jun;Oh, Young-Seon;Lee, Sun-Joo
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.118-122
    • /
    • 1995
  • Escherichia Coli ornithine transcarbamylase is the enzyme which catalyzes the L-citrulline biosynthesis from L-ornithine and carbamyl phosphate. To facilitate the purification of enzyme which will be used for many biochemical studies such as structure and function relationships and catalytic mechanisms, the cloning and expression of E. coli argI gene for ornithine transcarbamylase was conducted. argI was amplified from genomic DNA of E. coli strain of $DH5{\alpha}$, by polymerization chain reaction (PCR) method. The amplified argI gene was ligated to the prokaryotic expression vector pKK223-3 and used for transformation of E. coli TB2 which was deficient of ornithine transcarbamylase. The over-produced enzyme by the tnansformant was purified by ammonium sulfate fractionation, heat denaturation and affinity chromatography. The result of SDS denaturation gel electrophoresis for the purified enzyme showed a single band of about 38 kDa of ornithine transcarbamylase. Kinetic data for the expressed enzyme gave almost the s?????? values as those of the wild type enzyme. The $k_{cat}$, of the enzyme was $1.0{\times}10^5min^{-1}$, and $K_ms$ for ornithine and carbamyl phosphate were 0.35 mM and 0.06 mM, respectively.

  • PDF

Cats Cloned from Fetal Fibroblast Cells by Nuclear Transfer

  • Yin, X.J.;Lee, H.S.;Lee, Y.H.;Hwang, W.S.;Kong, I.K.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2004.10a
    • /
    • pp.26-31
    • /
    • 2004
  • This work was undertaken in order to study the developmental competence of nuclear transfer cat embryo with fetal fibroblast and adult skin fibroblast as donor nuclei. Oocytes wererecovered by mincing the ovaries in Hepes-buffered TCM199 and selected the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark. Homogenous ooplasm were cultured for maturation in TCM199 + 10% fetal bovine serum (FBS) for 12 hours and used as a source of recipient cytoplast for exogenous somatic nuclei. In Experiment 1, we evaluated the effect donor cell types on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate was not different between fetal fibroblast and adult skin cell (71.2 vs. 66.8; 71.0 vs. 57.6; 4.0 vs. 6.1 %, P<0.05). In Experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of seven recipient queens was delivered naturally 2healthy cloned cats and 1 stillborn from fetal fibroblast cell of male origin after 65 days embryo transfer. One of three recipient queens was delivered naturally 1 healthy cloned cat from adult skin cell of female after 65 days embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning.

  • PDF

Isolation and Characterization of Zymomonas mobilis DNA Fragments Showing Promoter Activity in Escherichia coli (Escherichia coli에서 Promoter 활성을 보이는 Zymomonas mobilis DNA 조각의 분리와 분석)

  • Kim, Eun-Joon;Yoon, Ki-Hong;M.Y. Pack
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.600-605
    • /
    • 1989
  • For the purpose of isolation of the Zymomonas mobilis DNA fragments showing promoter activity in Escherichia coli, a promoter screening vector, PCMT215 was constructed by transferring a promoterless chloramphenicol acetyltransferase (CAT) gene of pYEJ001 into pMT21 which contains $\beta$-lactamase gene and multiple cloning sites. A library of Z, mobilis Sau3AI DNA fragments was constructed in E. coli using the newly constructed pCMT215. Fourteen clones showing resistance to chloramphenicol ranging in concentration from 30 to 750 $\mu$g/$m\ell$ were selected. From five clones of them, the Z. mobilis DNA fragments expressing CAT gene of the recombinant plasmids were sequenced and then sites of transcriptional initiation were identified. The nucleotide sequences of the cloned DNA shared AT rich regions, poly A's or T's stretches and palindromic regions. The positions of transcriptional initiation for CAT gene occurred at more than one site spaced over by 4 to 190 base pairs on the cloned fragments in E. coli.

  • PDF