• Title/Summary/Keyword: casting speed

Search Result 215, Processing Time 0.027 seconds

Fabrication Development of Stainless Steel - cast Iron Dual Tube (스테인리스강-주철 이중복합관의 제조개발에 관한 연구)

  • Choi, Sang-Ho;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 1988
  • The influences of some casting conditions on bonding ratio and state at bonding zone of stainless steel-cast iron dual tube produced by centrifugal casting process were investigated to estimate fabrication technics. 1) Bonding ratio is increasing such as increasing of inner surface temperature of outer metal(stainless steel STS 304), if pouring temperature of inner metal (cast iron) is constant. 2) The more pouring temperature of inner metal (cast iron) increase, the more bonding ratio increase when inner surface temperature of outer metal (cast iron) is constant. 3) As the mold rotary speed is increase, the hatching area of bonding map (perfect bonding area) goes down to the low pouring temperature of inner metal. 4) In order to predict bonding state of two different metal, we are able to make and use the bonding map about casting conditions such as inner surface temperature of outer metal, pouring temperature of inner metal and mold rotary speed.

  • PDF

A study on the phase change in the cylindrical mold by the enthalpy method (엔탈피법을 이용한 원통형 몰드내에서의 상변화과정에 관한 연구)

  • 여문수;최상경;김문철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.891-897
    • /
    • 1999
  • The heat transfer characteristics at the interface between the mold and the casting is one of the major factors for the solidification speed which determines the casting structures. The thermal resistance exists due to air gap formation at the mold/casting interface during the freezing process. In this study one dimensional Stefan problem with the air-gap resistance in the cylindrical mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method which is convenient in solving the Stefan problem with mushy zone. The present results agreed very well with those of previous papers. The effects of major parameters such as thermal conductivity, heat transfer coefficient of mold, on the thermal characteristics are investigated.

  • PDF

Numerical Study on Thermal Deformation of AC4C and AC7A Casting Material (AC4C와 AC7A 주조재의 열변형 수치해석적 연구)

  • Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.541-546
    • /
    • 2011
  • This study was numerically investigated on thermal deformation of AC4C and AC7A aluminum alloy casting material for manufacturing the automobile tire mold. The metal casting device was used in order to manufacture the mold product of automobile tire at the actual industrial field. The temperature distribution and the cooling time of these materials were numerically calculated by finite element analysis. Thermal deformation with stress distribution was also calculated form the temperature distribution results. The thermal deformation was closely related to the temperature difference between the surface and inside of the casting. As shown by numerical analysis result, the thermal deformation of AC7A casting material became higher than AC4C casting material. In addition, the results of displacement and stress distributions appeared to be larger at the center parts of casting than on its sides because of the shrinkage caused by the cooling speed difference.

Microstructure and Mechanical Properties of Hypereutectic Al-Si Alloy Bars Processed via Horizontal Continuous Casting (수평연속주조한 과공정 Al-Si합금 소경봉의 미세조직 및 기계적성질)

  • Kim, Wan-Chul;Park, Ji-Ha;You, Bong-Sun;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.585-591
    • /
    • 1997
  • Hyper-eutectic Al-17.5wt%Si alloy bars of 25 mm in diameter were produced by horizontal continuous casting process. Effect of both casting speed and primary Si refiner (AlCuP) on microstructure and mechanical properties of the alloy have been investigated. With increasing a weight fraction of AlCuP, the average primary Si size decreased down to $20 {\mu}m$. On the contrary, there was no notable changes of microstructure and primary Si size according to the casting speed in the experimental range of this study, indicating that the cooling rate should be increased to optimize and refine microstructure and primary Si size. The experimental results including hardness, tensile strength and wear resistance tests of the processed alloy bars showed a good possibility to develop the high performance wear resistant Al-Si alloy.

  • PDF

Dynamic Bulging Behavior Analysis by Finite Difference Method in High Speed Continuous Casting of Thin Slab (유한 차분법에 의한 Thin Slab 고속 연속주조의 동적벌징 거동해석)

  • Jeong, Yeong-Jin;Sin, Geon;Jo, Gi-Hyeon;Gang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1650-1660
    • /
    • 2000
  • Continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, rep lacing the conventional route of ingot casting and rolling. In order to achieve this merit, however, more studies about the mechanism between roll and slab are needed. In this paper, a dynamic bulging in steel cast slabs was simulated by considering the solidification and heat transfer. This study is to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under the ferrostatic pressure and slab-self weight has been calculated in terms of creep and elasto-plasticity. The strain and strain rate distributions in solidified shell undergoing a series of bulging are calculated with working boundary conditions.

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (III) - Butt Weldability of Sand Casting Magnesium Alloy using Pulsed Nd:YAG Laser - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (III) - Pulsed Nd:YAG 레이저를 이용한 사형주조 마그네슘 합금의 맞대기 용접성 -)

  • Kim, Jong-Do;Lee, Jung-Han;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2013
  • Magnesium has good castability and limited workability, so its products have been manufactured by almost casting processes. In this study, a pulsed Nd:YAG laser was used to butt-weld the sand casting magnesium alloys. And the effect of welding conditions such as peak power, pulse width, welding speed was evaluated in detail. As a result of this study, large underfill and plenty of spatter taken place under the conditions with high peak power. Thus, it is recommended to use low peak power and long pulse width to obtain good welds with deep penetration. It is also confirmed that the welding speed and pps(pulse per second) are directly connected at weld defects such as underfill, porosity.

Numerical analysis of the continuous casting process in the presence of thermo-solutal convection (열농도대류를 고려한 연속주조공정의 수치해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.445-456
    • /
    • 1997
  • Continuous casting process is numerically analyzed using the continuum model in a non-orthogonal coordinate system. Flow damping in the mush is modeled by combining the viscosity dependence on liquid fraction in dilute mush and the permeability dependence on liquid fraction in concentrated mush. The effect of turbulence is indirectly considered by effective diffusivity determined elsewhere by experiment. The main objective is to investigate the effects of casting parameters such as casting speed and tundish superheat on the distribution of surface temperature, shell thickness, metallurgical length and centerline segregation. Some of the computed results are compared with available experiments, and reasonable agreements are obtained.

Optimal Design of Strip Casting Roll (박판 주조 롤의 최적설계)

  • Park, Cheol-Min;Kang, Tae-Wook;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2466-2473
    • /
    • 2002
  • In twin roll strip casting process, the design of casting roll is the most important equipment for producing strip. Analyses of heat transfer and deformation for the casting roll are carried out by using the finite element program, ANSYS. Both the elastic deformation and the elasto-plastic deformation under a thermal load are considered in the analysis. Optimization to minimize the volume of roll is performed under the various thermal loads such as the heat flux and the roll speed. Design variables are defined by diameters and positions of the cooling hole in the roll , Although the thermal load remarkably varies, the design variables and objective function are found to be consistent.

Development of a Housing Component for an Auto-compressor Using Vacuum Ladling Die Casting (진공급탕식 다이캐스팅법을 이용한 자동차 콤프레서용 하우징 부품 개발)

  • Lee, H.S.;Park, J.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.195-201
    • /
    • 2012
  • A vacuum ladling die casting system is suggested as a means to obtain a high vacuum level. A high vacuum of 17.8 mmHg is obtained by sealing the inner space of the mould. The sample product is a rear-head housing for an auto-compressor, and the die-casting with 6-cavities was conducted. The flow analysis shows that the filling speed during vacuum ladling is faster than for a non-vacuum system. The air holes in the sample product were too small to be seen with the naked eye in X-ray films. Density tests show that the high vacuum ladling system reduces the internal porosity as much as 57.8% when compared to the non-vacuum system. A defective rate of only 0.17% was found from leak testing. The results of this research prove that the high vacuum die-casting process is useful for manufacturing of aluminium components under high internal pressure.

Thermal Analysis of Continuous Casting Welding-Coated Mold (용접코팅된 연속주조 몰드의 열해석)

  • 이종선;김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • This study is object to thermal analysis of continuous casting welding-coated mold. A two-dimen-sional transient finite element model was developed to compute the temperature distribution for continuous casting welding-coated mold. For thermal analysis using analysis result from FEM code. This thermal analysis results, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF