• Title/Summary/Keyword: caspase-9

Search Result 651, Processing Time 0.029 seconds

Radix Tetrastigma Hemsleyani Flavone Induces Apoptosis in Human Lung Carcinoma A549 Cells by Modulating the MAPK Pathway

  • Zhong, Liang-Rui;Chen, Xian;Wei, Ke-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5983-5987
    • /
    • 2013
  • Radix Tetrastigma Hemsleyani Flavone (RTHF) is widely used as a traditional herb for its detoxification and anti-inflammation activity. Recently, several studies have shown that RTHF can inhibit growth and induce apoptosis in human cancer cell lines. However, the mechanisms are not completely understood yet. In this study we investigated the potential effects of RTHF on growth and apoptosis in human lung adenocarcinoma A549 cells as well as its mechanisms. A549 cells were treated with RTHF at various concentrations for different times. In vitro the MTT assay showed that RTHF had obvious anti-proliferation effects on A549 cells in a dose- and time-dependent manner. Cell morphological changes observed by inverted microscope and Hoechst33258 methods were compared with apoptotic changes observed by fluorescence microscope. Cell apoptosis inspected by flow cytometry showed significant increase in the treatment group over the control group (P<0.01). Expression of apoptosis related Bax/Bcl-2, caspases and MAPK pathway proteins were detected by Western blotting. The results showed that RTHF up-regulated the Bax/Bcl-2 ratio and cle-caspase3/9, cle-PARP expression in a dose-dependent manner. Expression of p-p38 increased, p-ERK decreased significantly and that of p-JNK was little changed in the RTHF group when compared with the control group. These results suggest that RTHF might exert anti-growth and apoptosis activity against lung cancer A549 cells through activation of caspases and Bcl-2 family proteins and the MAPK pathway, therefore presenting as a promising therapeutic agent for the treatment of lung cancer.

Induction of Apoptosis by Scolopendra subspinipes mutilans in Human Leukemia HL-60 Cells through Bcl-xL Regulation (왕지네(Scolopendra subspinipes mutilans)의 Bcl-xL 조절에 의한 HL-60 세포의 아폽토시스(Apoptosis) 유도)

  • Kim, Kil-Nam;Kim, Sang-Bum;Yoon, Weon-Jong;Yang, Kyoung-Sik;Park, Soo-Yeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1408-1414
    • /
    • 2008
  • The anticancer properties of Scolopendra subspinipes mutilans extract were investigated. The extract from S. subspinipes mutilans by 80% EtOH was fractionated with n-hexane, dichloromethan ($CH_2Cl_2$), ethylacetate (EtOAc), and butanol (BuOH) in order. The EtOAc fraction showed the highest inhibitory activity (about 80%) against human leukemia (HL-60) cell growth at $50\;{\mu}g/mL$. To explore the mechanism of cytotoxicity, we used several measures of apoptosis to determine whether these processes were involved in EtOAc fraction-induced HL-60 cell death. Our results showed EtOAc fraction induced cell shrinkage, cell membrane blebbing, apoptotic body, and DNA fragmentation. The EtOAc fraction gradually decreased the expression of anti-apoptotic Bcl-xL and led to the activation of caspase-3, -9 and cleavage of PARP. These findings suggest that S. subspinipes mutilans exhibits potential anticancer properties.

Methanol Extracts of Codium fragile Induces Apoptosis through G1/S Cell Cycle Arrest in FaDu Human Hypopharynx Squamous Carcinoma Cells

  • Lee, Seul Ah;Park, Bo-Ram;Moon, Sung Min;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.61-68
    • /
    • 2018
  • Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase -3, -7, -9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor). Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.

Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells

  • Park, Jin-Ah;Na, Han-Heom;Jin, Hyeon-Ok;Kim, Keun-Cheol
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.884-892
    • /
    • 2019
  • Piperlongumine (PL), a natural alkaloid compound isolated from long pepper (Piper longum), can selectively kill cancer cells, but not normal cells, by accumulation of reactive oxygen species (ROS). The objective of this study was to investigate functional roles of expression of SETDB1 and FosB during PL treatment in MCF7 breast cancer cells. PL downregulates SETDB1 expression, and decreased SETDB1 expression enhanced caspase 9 dependent-PARP cleavage during PL-induced cell death. PL treatment generated ROS. ROS inhibitor NAC (N-acetyl cysteine) recovered SETDB1 expression decreased by PL. Decreased SETDB1 expression induced transcriptional activity of FosB during PL treatment. PARP cleavage and positive annexin V level were increased during PL treatment with FosB overexpression whereas PARP cleavage and positive annexin V level were decreased during PL treatment with siFosB transfection, implying that FosB might be a pro-apoptotic protein for induction of cell death in PL-treated MCF7 breast cancer cells. PL induced cell death in A549 lung cancer cells, but molecular changes involved in the induction of these cell deaths might be different. These results suggest that SETDB1 mediated FosB expression may induce cell death in PL-treated MCF7 breast cancer cells.

Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells

  • Lee, Ah Young;Nam, Mi Na;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • Oxidative stress is one of the pathogenic mechanisms of various neurodegenerative diseases, such as Alzheimer's disease. Neuroglia, the most abundant cells in the brain, is thought to play an important role in the antioxidant defense system and neuronal metabolic support against neurotoxicity and oxidative stress. We investigated the protective effect of paeoniflorin (PF) against oxidative stress in C6 glial cells. Exposure of C6 glial cells to hydrogen peroxide (H2O2, 500 μM) significantly decreased cell viability and increased amounts of lactate dehydrogenase (LDH) release, indicating H2O2-induced cellular damage. However, treatment with PF significantly attenuated H2O2-induced cell death as shown by increased cell survival and decreased LDH release. The H2O2-stimulated reactive oxygen species production was also suppressed, and it may be associated with improvement of superoxide dismutase activity by treatment with PF. In addition, an increase in ratio of Bcl-2/Bax protein expression was observed after treatment with PF. In particular, the down-stream of the apoptotic signaling pathway was inhibited in the presence of PF, mostly by reduction of cleaved-poly ADP ribose polymerase, cleaved caspase-3, and -9 protein expression. Furthermore, H2O2-induced phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 was attenuated by treatment with PF. Taken together, neuroprotective effect of PF against oxidative stress probably result from the regulation of apoptotic pathway in C6 glial cells. In conclusion, our findings suggest that PF may be a potent therapeutic agent for neurodegenerative disorders.

Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

  • Choi, Yoon-Hee;Lee, Hyun Sook;Chung, Cha-Kwon;Kim, Eun Ji;Kang, Il-Jun
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS: AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS: AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS: These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes.

Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats

  • Jung, Kiwon;An, Jun Min;Eom, Dae-Woon;Kang, Ki Sung;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.188-194
    • /
    • 2017
  • Background: Fermented black ginseng (FBG) is processed ginseng by the repeated heat treatment and fermentation of raw ginseng. The protective effect and mechanism of FBG on cisplatin-induced nephrotoxicity was investigated to evaluate its therapeutic potential. Methods: The free radical scavenging activity of FBG was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH). In addition, the protective effect against cisplatin-induced renal damage was tested in rats. FBG was orally administered every day at a dose of 150 mg/kg body weight for 10 d, and a single dose of cisplatin was administered intraperitoneally (7.5 mg/kg body weight) with 0.9% saline on the $4^{th}$ d. Results: The DPPH radical-scavenging activity of FBG ($IC_{50}=384{\mu}g/mL$) was stronger than that of raw ginseng. The improved DPPH radical-scavenging activity was mediated by the generation phenolic compounds. The decreased cell viability by cisplatin was recovered significantly after treatment with FBG in a dose-dependent manner. Then, the protective effect of FBG on cisplatin-induced oxidative renal damage was investigated in rats. The decreased creatinine clearance levels, which are a reliable marker for renal dysfunction in cisplatin-treated rats, were reduced to the normal level after the administration of FBG. Moreover, FBG showed protective effects against cisplatin-induced oxidative renal damage in rats through the inhibition of $NF-{\kappa}B/p65$, COX-2, and caspase-3 activation. Conclusion: These results collectively show that the therapeutic evidence for FBG ameliorates the nephrotoxicity via regulating oxidative stress, inflammation, and apoptosis.

Neuroprotective effect of Aster yomena (Kitam.) Honda against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells

  • Kim, Min Jeong;Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.283-290
    • /
    • 2020
  • Oxidative stress is one of the contributors of neurodegenerative disorders including Alzheimer's disease. According to previous studies, Aster yomena (Kitam.) Honda (AY) possesses variable pharmacological activities including anti-coagulant and anti-obesity effect. In this study, we aimed to determine the neuroprotective effect of ethyl acetate fraction from Aster yomena (Kitam.) Honda (EFAY) against oxidative stress. Therefore, we carried out 3-(4,5-dimethylthiazol-2-yl)-2,3-diphenyl tetrazolium bromide, lactate dehydrogenase (LDH), and 2',7'-dichlorofluorescin diacetate assays in SH-SY5Y neuronal cells treated with hydrogen peroxide (H2O2). H2O2-treated control cells exhibited reduced viability of cells, and increased LDH release and reactive oxygen species (ROS) production compared to normal cells. However, treatment with EFAY restored the cell viability and inhibited LDH release and ROS production. To investigate the underlying mechanisms by which EFAY attenuated neuronal oxidative damage, we measured protein expressions using Western blot analysis. Consequently, it was observed that EFAY down-regulated cyclooxygenase-2 and interleukin-1β protein expressions in H2O2-treated SH-SY5Y cells that mediated inflammatory reaction. In addition, apoptosis-related proteins including B-cell lymphoma-2-associated X protein/B-cell lymphoma-2 ratio, cleaved caspase-9, and cleaved-poly (ADP-ribose) polymerase protein expressions were suppressed when H2O2-treated cells were exposed to EFAY. Our results indicate that EFAY ameliorated H2O2-induced neuronal damage by regulating inflammation and apoptosis. Altogether, AY could be potential therapeutic agent for neurodegenerative diseases.

Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis

  • Kim, Song-In;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.387-397
    • /
    • 2016
  • Neurofibrillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active $GSK3{\beta}$ ($GSK3{\beta}-S9A$) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin -induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin significantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD.

JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

  • Choi, Dae Woo;Kim, Do Kyung;Kanai, Yoshikatsu;Wempe, Michael F.;Endou, Hitoshi;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.599-607
    • /
    • 2017
  • Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.