• Title/Summary/Keyword: caspase-12

Search Result 271, Processing Time 0.024 seconds

Caspase-3-like Death Protease is Inhibited by Interleukin-7

  • Hong, Soon-Duck;Lee, Sang-Han;Tsuruo, Takashi;Lee, Dong-Sun
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.58-63
    • /
    • 1999
  • Highly metastatic mouse T-lymphoma CS21 cells can grow in vitro when cocultured with CA12 lymph node stromal cells, but they undergo apoptotic cell death when separated from CA12 stromal cells. It has been found that cysteine and interleukin-7(IL-7) as antiapoptotic soluble factors that produced by CA12 stromal cells. In this study, we report that an ICE family protease is activated in CS21 cells when separated from CA12 stromal cells and cultured alone. Enzyme purification using an avidin affinity column revealed that the involved cysteine protease possessed caspase3-like death protease activity. In addition, when IL-7 was added to CS21 cell culture, the protease activity could not be detected during partial purification of the enzyme. Taken together, these results strongly suggest that the caspase3-like protease activation is suppressed by IL-7 as an antiapoptotic factor that leads to abrogation of apoptosis execution.

  • PDF

Over Expression of BCL2 and Low Expression of Caspase 8 Related to TRAIL Resistance in Brain Cancer Stem Cells

  • Qi, Ling;Ren, Kuang;Fang, Fang;Zhao, Dong-Hai;Yang, Ning-Jiang;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4849-4852
    • /
    • 2015
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been investigated as an effective agent to treat various cancers. Cancer stem cells are resistant to TRAIL treatment, but the mechanism of TRAIL resistance remains unknown. In this study, brain cancer stem cells were isolated by CD133 magnetic sorting, and the number of CD133 positive cells detected by flow cytometry. The self-renewing capacity of brain cancer stem cells was examined by a neurosphere formation assay, and the percentage of cell death after TRAIL treatment was examined by an MTS assay. Expression of DR5, FADD, caspase 8 and BCL2 proteins was detected by western blot. The amount of CD133 positive cells was enriched to 71% after CD133 magnetic sorting. Brain cancer stem cell neurosphere formation was significantly increased after TRAIL treatment. TRAIL treatment also reduced the amount of viable cells and this decrease was inhibited by a caspase 8 inhibitor or by the pan-caspase inhibitor z-VAD (P<0.05). Brain cancer stem cells expressed lower levels caspase 8 protein and higher levels of BCL2 protein when compared with CD133 negative cells (P<0.05). Our data suggest that TRAIL resistance is related to overexpression of BCL2 and low expression of caspase 8 which limit activation of caspase 8 in brain cancer stem cells.

S-allylcysteine-mediated Activation of Caspases and Inactivation of PARP to Inhibit Proliferation of HeLa (S-allylcysteine 매개 caspases의 활성화 및 PARP의 불활성화를 통한 HeLa 세포주의 증식 억제효과)

  • Kim, Hyun Hee;Kong, Il-Keun;Min, Gyesik
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.164-171
    • /
    • 2017
  • Our previous study suggested that S-allylcysteine (SAC) inhibits the proliferation of the human cervical cancer cell line, HeLa, at least in part through the induction of apoptosis and cell cycle arrest. To further analyze the specific molecular mechanism(s) by which SAC mediates its antiproliferative effects, this study examined the role of SAC in regulating the protein expression of initiator caspase (caspase-9), effector caspases (caspase-3 and caspase-7), and poly-ADP-ribose polymerase (PARP) in HeLa. Western blot analysis showed that when cells were treated with 50 mM SAC for 48 hr, the expression of procaspase-3, -7, and -9 and PARP was reduced by 94%, 38%, 95%, and 64%, respectively, as compared to the untreated control. In contrast, the expression of caspase-3, -7, and -9 and cleaved-PARP was markedly increased by SAC treatment. The SAC-mediated changes in the expression of these proteins were correlated with the concomitant inhibition of cellular proliferation by SAC. The cell proliferation assay showed that HeLa treatment with more than 20 mM SAC for 6-48 hr resulted in both concentration- and time-dependent inhibition of cellular proliferation. These results indicate that the SAC-induced antiproliferative effect in HeLa may be mediated at least in part through the activation of caspase-9, followed by the activation of caspase-3 and caspase-7 as well as the inactivation of PARP, thus leading to cellular apoptosis.

Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibited Caspase-1-mediated IL-$1{\beta}$ Expression

  • Shim, Hong;Moon, Jung Sun;Lee, Sookyeon;Yim, Dongsool;Kang, Tae Jin
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.213-216
    • /
    • 2012
  • Our previous report showed that polyacetylene compound, 1-Heptadecene-11, 13-diyne-8, 9, 10-triol (PA) from the root of Cirsium japonicum var. ussuriense has anti-inflammatory activity. In this study we investigated the role of the PA as inhibitor of caspase-1, which converts prointerleukin-$1{\beta}$ (proIL-$1{\beta}$) to active IL-$1{\beta}$ and is activated by inflammasome involved in the inflammatory process. We tested the effect of PA on the production of pro-inflammatory cytokines, IL-$1{\beta}$ in murine macrophage cell line, RAW264.7. PA inhibited lipopolysaccharide (LPS)-induced IL-$1{\beta}$ production by macrophages at a dose dependent manner. PA also suppressed the activation of caspase-1. The mRNA level of ASC (apoptosis-associated spec-like protein containing a CARD), an important adaptor protein of inflammasome, was decreased in the PA treated group. Therefore our results suggest that the anti-inflammatory effect of PA is due to inhibit the caspase-1 activation.

Apoptosis of 4-Acetyl-12, 13-epoxyl-9-trichothecene-3, 15-diol isolated from the fruiting bodies of Isaria japonica Yasuda via Caspase-3 in Bladder cancer Cell line (NBT-II) (Caspase-3을 경유한 동충하초 자실체 유래 4-Acetyl-12, 13-epoxyl-9-trichothecene-3, 15-diol의 방광암 세포주(NBT-II) Apoptosis)

  • Kim Hyeong-Jin;Jang S.I.;Oh K,S.;Hong K.H.;Kim Y.C.;Pae H.O.;Yun Y.G.;Chung H.T.;Kwon T.O.
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 2002
  • The fruiting bodies of Isaria japonica have been traditionally used in Korea to treat cancer. An apoptosis-inducing compound, 4-Acetyl-12, 13-epoxyl -9-trichothecene-3, I5-diol (AETD), was isolated from the methanol extract of fruiting bodies of Isaria japonica Yasuda by bioassay -guided fractionation. The apoptosis of murine bladder cancer cell line (NBT-Ⅱ) by the compound was accessed by propidium iodide staining flow cytometric analysis, and apoptosis-inducing activity at $IC_{50}$ concentration (5 nmol/L) was further confirmed by a nuclear morphological change, a ladder pattern of DNA fragmentation, and an activation of caspase-3. These results indicate that AETD induces apoptosis of NBT-Ⅱ cells via expression of caspase-3.

  • PDF

S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Ito Yoshihisa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.11a
    • /
    • pp.124-128
    • /
    • 2004
  • We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

  • PDF

Effect of Foeniculi Fructus on the Ovarian Function and Gene Expression of Caspase-3, MAPK and MPG in Female Mice (소회향(小茴香)이 자성(雌性)생쥐의 생식능력과 Caspase-3, MAPK 및 MPG 유전자 발현에 미치는 영향)

  • Jeon, Mi-Hye;Park, Young-Sun;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.2
    • /
    • pp.38-56
    • /
    • 2010
  • Purpose: This study was designed to evaluate the effect of administration of Foeniculi Fructus on ovarian functions and differential gene expressions related cell viability such as caspase-3, MAPK and MPG in female mice. Methods: We administered the Foeniculi Fructus to 6-week-old female CF-1 mice for 4, 8, 12 days. After administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$ concentration in the comparison of control group with $0\;mg/m{\ell}$, we observed the mean number of total ovulated oocytes and the number of morphologically normal oocytes. After entosomatic fertilization, we observed the rate of fertilized 2-cell embryos to blastocyst stage in vitro. Also we chose the caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair by RT-PCR. Results: 1. In case of 4, 8, 12day administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$, the mean number of total ovulated oocytes and the number of morphologically normal oocytes were increased in the comparison of control group. 2. In case of 4, 8, 12day administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$, the rates of blastocyst formation from 2-cell stages were increased in the comparison of control group. 3. In case of 4, 8, 12day administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$, the gene expression of caspase-3, MAPK, MPG didn't show significant result in the comparison of control group. Conclusion: This study shows that Foeniculi Fructus has significant effects on the increase of the function on ovulation and embryonic development of female mice. But this results have nothing to do with caspase-3, MAPK and MPG genes. So we need a further study for which genes are related to the activation of reproductive functions of Foeniculi Fructus.

A novel mechanism of Korean Red Ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages

  • Min, Ji-Hyun;Cho, Hui-Jin;Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.675-682
    • /
    • 2022
  • Background: Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods: Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results: KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion: The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.

The Effect of Onpoeum on the Ovarian Functions and Differential Gene Expression of Caspase-3, MAPK and MPG in Female Mice (온포음(溫胞飮)이 자성생쥐의 생식능력과 Caspase-3, MAPK 및 MPG 유전자 발현에 미치는 영향)

  • Park, Young-Sun;Baek, Seung-Hee;Kim, Eun-Ha;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2007
  • Purpose: These experiments were undertaken to evaluate the effect of Onpoeum on ovarian functions and differential gone expressions related with cell viabilities caspase-3, MAPK and MPG in female mice. Methods: We administered the Onpoeum to 6-week-old female ICR mice for 4, 8, or 12 days. With different concentration of Onpoeum, the female mice were injected PMSG and hCG for ovarian hyperstimulation. The mice divided into 3 different groups for each experiment. We chose the Caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair. Results: In case of 4, 8, 12 day of Onpoeum, we were examined the mean number of total ovulated oocytes and the number of morphologically normal oocytes. We were also examined the embryonic developmental competence in vitro. In audition we were examined the differential expression of cell apoptosis, viability and DNA repair related genes, Caspase-3, MAPK and MPG according to concentration and duration of Onpoeum. From these results showed that the administration of Onpoeum played a role of prevention of cell apoptosis and DNA damages and also increased cell proliferation resulted in ovarian functions. Conclusion: It is suggested that the medication of Onpoeum may have beneficial effect on reproductive functions of female mice via prevention of cell apoptosis and DNA damaging and promotion of cell proliferation.

  • PDF

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.