• Title/Summary/Keyword: caspase activity

Search Result 821, Processing Time 0.026 seconds

Caspase-2 mediates triglyceride (TG)-induced macrophage cell death

  • Lim, Jaewon;Kim, Hyun-Kyung;Kim, Sung Hoon;Rhee, Ki-Jong;Kim, Yoon Suk
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.510-515
    • /
    • 2017
  • Triglyceride (TG) accumulation causes macrophage cell death, which affects the development of atherosclerosis. Here, we examined whether caspase-2 is implicated in TG-induced macrophage cell death. We found that caspase-2 activity is increased in TG-treated THP-1 macrophages, and that inhibition of caspase-2 activity drastically inhibits TG-induced cell death. We previously reported that TG-induced macrophage cell death is triggered by caspase-1, and thus investigated the relationship between caspase-2 and caspase-1 in TG-induced macrophage cell death. Inhibition of caspase-2 activity decreased caspase-1 activity in TG-treated macrophages. However, caspase-1 inhibition did not affect caspase-2 activity, suggesting that caspase-2 is upstream of caspase-1. Furthermore, we found that TG induces activation of caspase-3, -7, -8, and -9, as well as cleavage of PARP. Inhibition of caspase-2 and -1 decreased TG-induced caspase-3, -7, -8, and -9 activation and PARP cleavage. Taken together, these results suggest that TG-induced macrophage cell death is mediated via the caspase-2/caspase-1/apoptotic caspases/PARP pathways.

The Effect of NMDA/glycine Receptor Antagonist, 7-Chlorokynurenic Acid on Cultured Astrocytes Damaged by Ischemia-like Condition

  • Jung, In-Ju
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • I evaluated the protective effect of N-methyl-D-aspartate (NMDA)/glycine receptor antagonist, 7-chlorokinurenic acid (CKA) on cultured mouse astrocytes damaged by ischemia-like condition (ILC). The protective effect of CKA was assessed by cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD)-like activity and lipid peroxidation. To examine the effect of CKA on the cell apoptosis, the expression and the activity of caspase 3 were assessed by Western blotting. CKA increased the cell viability decreased by ILC. CKA also decreased the LDH activity and antioxidative effects such as SOD-like activity and inhibitory activity of lipid peroxidation. In addition, CKA suppressed the expression of caspase 3 associated with apoptosis, and increased the cell viability by the decrease of caspase 3 activity as like the caspase 3 inhibitor, Av-DVED-MED. From these results, these results suggest that ILS induces cell cytotoxicity in cultured astrocytes and CKA, NMDA/glycine receptor antagonist, is effective on the prevention of the cytotoxicity due to ILS by the antioxidative effect and the inhibition of apoptosis.

  • PDF

A Correlative Study on Amyloid β-Induced Cell Death Independent of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.87-91
    • /
    • 2014
  • Amyloid beta ($A{\beta}$) peptide has been implicated in the pathogenesis of Alzheimer's disease and has been reported to induce apoptotic death in cell culture. Cysteine Proteases, a family of enzymes known as caspases, mediate cell death in many models of apoptosis. In the present study, we examined the caspase activity and cell death in $A{\beta}$-treated SHSY5Y cells, as an attempt to elucidate the relationship between the type of caspase and $A{\beta}$-induced cell death. $A{\beta}$ at 20 ${\mu}M$ induce activation of caspase-3, 8 and 9 activity, but not the caspase-1. Caspase-3, 8 and 9 were processed by Ab treatment, consistent with the activity assay. Inhibition of the caspase activities by the selective inhibitors, however, marginally affected the cell death induced by $A{\beta}$. Taken together, the results indicate that $A{\beta}$-induced cell death may be independent of caspase activity and rather, the enzymes might be activated as a result of the cell death.

Effect of Inonotus Obliques Extracts on Proliferation and Caspase-3 Activity in Human Castro-Intestinal Cancer Cell Lines (차가버섯 추출물이 소화기계 암세포의 증식 및 Caspase-3 활성에 미치는 영향)

  • 황용주;노건웅;김선희
    • Journal of Nutrition and Health
    • /
    • v.36 no.1
    • /
    • pp.18-23
    • /
    • 2003
  • We studied the effects of hot water extract of Inonotus obliquos mushroom on the proliferation and apoptosis of the human colon adenocarcinoma, HT-29 and the human stomach adenocarcinoma, SNU-484 cell. Cells were maintained with Dulbecco's modified Eagle medium/Ham's F-12 nutrient mixture supplemented with 10% fetal bovine serum at 37$^{\circ}C$ in a humidified $CO_2$. For the cell proliferation experiments, cells were seeded in 35 mm dishes, and were treated with the various concentrations of the extract for the different time course. Apoptosis was measured by caspase-3 activity. When we incubated HT-29 cells for 24, 48, 72, and 96 hours after treatments, the cell proliferation was more suppressed with more treatment time. In case of the human stomach cancer cell, SNU484, the extract significantly decreased the cell number. Thus, the treatment of 1.5 mg/$m\ell$ extract decreased almost half of the cell number. Caspase-3 activity in HT-29 was increased by the treatment of mushroom extracts. In SNU484, caspase-3 activity tended to increase in proportion to the amounts of the extracts and the treatment of Inonotus obliquos affected the activity a lot. Therefore, Inonotus obliquos is suggested for the prevention of gastro-intestinal cancer and strongly recommended for the treatment of stomach cancer. (Korean J Nutrition 36(1) : 18~23, 2003)

Cytotoxic Effect of Triglycerides via Apoptotic Caspase Pathway in Immune and Non-immune Cell Lines

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Hyperlipidemia is defined as conditions of the accumulation of lipids such as free fatty acids (FFA), triglyceride (TG), cholesterol and/or phospholipid in the bloodstream. Hyperlipidemia can cause lipid accumulation in non-adipose tissue, which is lipid-cytotoxic effects in many tissues and mediates cell dysfunction, inflammation or programmed cell death (PCD). TG is considered to be a major cause of atherosclerosis through inflammatory necrosis of vascular endothelial cells. Recently, TG have also been shown to exhibit lipid-cytotoxicity and induce PCD. Therefore, we investigated the effect of TG on the cytotoxic effect of various cell types. When exposed to TG, the cell viability of U937 monocytes and Jurkat T lymphocytes, as well as the cell viability of MCF-7, a non-immune cell, decreased in time- and dose-dependent manner. In U937 cells and Jurkat cells, caspase-9, an intrinsic apoptotic caspase, and caspase-8, an extrinsic apoptotic caspase, were increased by exposure to TG. However, in TG-treated MCF-7 cells, caspase-8 activity increased only without caspase-9 activity. In addition, the reduction of cell viability by TG was recovered when all three cell lines were treated with pan-caspase inhibitor. These results suggest that activation of apoptotic caspases by TG causes lipotoxic effect and decreases cell viability.

Protective Effects of Chitosan on the Cadmium Cytotoxicity in Rat Glioma Cells (흰쥐 신경교종세포에서 카드뮴 세포독성에 대한 키토산의 효과)

  • 백용아;이정래;김강득;김혜원;이한솔;허정무;오재민;최민규;정연태
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • Casapse-3 protease is known as a key role of apoptotic enzyme, and caspase-3 activity is a central event that occurs upstream of DNA fragmentation during apoptosis. This study demonstrates that chitosan pretreatment inhibits cadmium-induced apoptosis by attenuating the activity of caspase-3. We also analyzed the protective effect of chitosan on DNA fragmentation induced by cadmium. Cadmium toxicity was examined by DNA fragmentation and nuclear condensation with Hoechst stain. Caspase-3 activities were increased cadmium treated group for 3 hours compared with control. When chitosan (150 mg/ml) was pretreated at 30 min before cadmium treatment, cadmium cytotoxicity was suppressed in a dose-dependent manner evaluated by DNA fragmentation and caspase activity. From these results, it is suggest that the protective effect of chitosan pretreatment against cadmium-induced cytotoxicity is mediated through inhibition of caspase-3 protease activation and DNA fragmentation.

Caspase-8 Potentiates Triglyceride (TG)-Induced Cell Death of THP-1 Macrophages via a Positive Feedback Loop (Caspase-8의 양성 피드백 방식을 통한 중성지방-유도 THP-1 대식세포 사멸 증가)

  • Jung, Byung Chul;Lim, Jaewon;Kim, Sung Hoon;Kim, Yoon Suk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.158-164
    • /
    • 2021
  • Hypertriglyceridemia is the main risk factor for atherosclerosis. It is reported that triglyceride (TG) induces macrophage cell death, and is involved in the formation of plaques and development of atherosclerosis. We previously reported that TG-induced cell death of macrophages is mediated via pannexin-1 activation, which increases the extracellular ATP and subsequent increase in potassium efflux, thereby activating the caspase-2/caspase-1/apoptotic caspases, including the caspase-8 pathway. Contrarily, some studies have reported that caspase-8 is an upstream molecule of caspase-1 and caspase-2 in several cellular processes. Therefore, this study was undertaken to investigate whether caspase-8 influences its upstream molecules in TG-stimulated macrophage cell death. We first confirmed that caspase-8 induces caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage in TG-treated macrophages. Next, we determined that the inhibition of caspase-8 results in reduced caspase-1 and -2 activity, which are upstream molecules of caspase-8 in TG-induced cell death of macrophages. We also found that ATP treatment restores the caspase-8 inhibitor-induced caspase-2 activity, thereby implying that caspase-8 affects the upstream molecules responsible for increasing the extracellular ATP levels in TG-induced macrophage cell death. Taken together, these findings indicate that caspase-8 potentiates the TG-induced macrophage cell death by activating its upstream molecules.

CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min;Kim, Kun-Jung;Lee, Jong-Gil;Lee, Chai-Ho;Han, Dong-Min;Yun, Young-Gab;Hong, Gi-Yun;An, Won-Gun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.

Effect of Hypoxia on the Signal Transduction of Apoptosis in Osteoblasts (저산소 상태에서 조골세포 고사의 신호전달 기전)

  • Park, Young-Joo;Oh, Soh-Taek;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.453-463
    • /
    • 2003
  • Mammalian cell is critically dependent on a continuous supply of oxygen. Even brief periods of oxygen deprivation can result in profound cellular damage. The aim of this study was to examine the possible mechanism of apoptosis in response to hypoxia in MC3T3E1 osteoblasts. MC3T3El osteoblasts under hypoxic conditions ($2\%$ oxygen) resulted in apoptosis in a time-dependent manner, determined by DNA fragmentation assay and nuclear morphology, stained with fluorescent dye (Hoechst 33258) Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, suppressed the DNA ladder in response to hypoxia in a concentration dependent manner. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-l activity (YVADase) was detected. To confirm what caspases were involved in apoptosis, western blot analysis was performed using an anticaspase-3 or 6 antibody. The 17-kDa protein, that corresponds to the active products of caspase-3 and the 20-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged lysates, in which the full length forms of caspase-3 and 6 were evident. With a time course similar to caspase-3 and 6 activation, hypoxic stress also caused the cleavage of Lamin A, typical of caspase-6 activity. In addition, the hypoxic stress elicited the release of cytochrome c into the cytosol during apoptosis. These findings suggested that the activation of caspases accompanied by a cytochrome c release in response to hypoxia was involved in apoptotic cell death in MC3T3E1 osteoblasts.

A Possible Physiological Role of Caspase-11 During Germinal Center Reaction

  • Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Caspase-11 has been known as a dual regulator of cytokine maturation and apoptosis. Although the role of caspase-11 under pathological conditions has been well documented, its physiological role has not been studied much. In the present study, we investigated a possible physiological function of caspase-11 during immune response. In the absence of caspase-11, immunized spleen displayed increased cellularity and abnormal germinal center structure with disrupted microarchitecture. The rate of cell proliferation and apoptosis in the immunized spleen was not changed in the caspase-11-deficient mice. Furthermore, the caspase-11-deficient peritoneal macrophages showed normal phagocytotic activity. However, caspase-11-/-splenocytes and macrophages showed defective migrating capacity. The dysregulation of cell migration did not seem to be mediated by caspase-3, interleukin-$1{\alpha}$ or interleukin-$1{\beta}$ which acts downstream of caspase-11. These results suggest that a direct regulation of immune cell migration by caspase-11 is critical for the formation of germinal center microarchitecture during immune response. However, humoral immunity in the caspase-11-deficient mice was normal, suggesting the formation of germinal center structure is not essential for the affinity maturation of the antibodies.