• Title/Summary/Keyword: caspase 3, 9

Search Result 607, Processing Time 0.031 seconds

Apoptotic effect of physcion isolated from marine fungus Microsporum sp. in PC3 human prostate cancer cells

  • Ding, Yi-Shan;Kim, Won-Suk;Park, Sun Joo;Kim, Se-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.8
    • /
    • pp.22.1-22.7
    • /
    • 2018
  • Background: Apoptosis is a process of programmed cell death, and apoptosis defect results in serious diseases such as cancer. Apoptosis induction is one of the key mechanisms of anti-cancer agents. This study was aimed to find anti-prostate cancer compounds from marine-derived fungus Microsporum sp. Results: We found that physcion isolated from the fermentation broth extract of the marine fungus Microsporum sp. strain MFS-YL decreases the cell proliferation of PC3 human prostate cancer cells. Physcion induced cell apoptosis as determined by Annexin V/propidium iodide double staining. Physcion downregulated the anti-apopotoic proteins such as Ras, Bcl-xL, and Bcl-2, whereas upregulated the pro-apoptotic Bax. Physcion also activated caspase-3, caspase-8, and caspase-9. Conclusion: These results suggest that physcion from Microsporum sp. inhibits the proliferation of PC3 human prostate cancer cells via the pathway leading to apoptotic cell death. Physcion may be a potential candidate in the field of anticancer drug discovery against human prostate cancer.

Anti-apoptotic effect by Bcl-2 in UVB-irradiated keratinocytes.

  • Takahashi, Hidetoshi;Honma, Masaru;Ishida-Yamamoto, Akemi;Namikawa, Kazuhiko;Miwa, Akiko;Okado, Haruo;Kiyama, Hiroshi;Iizuka, Hajime
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Bcl-2 is a member of large bcl-2 family and protects cells from apoptosis. Using bcl-2-expressing adenovirus vector (Ad-bc1-2), we investigated the effect of bc1-2 on UVB-induced apoptosis. Adenovirus vector efficiently introduced bc1-2 gene in cultured normal mouse keratinocytes (NMK cells); almost all NMK cells (lx10$^{6}$ ) were transfected at Ixl0$^{8}$ PFU/ml. Bcl-2-transfected NMK cells were significantly resistant to UVB-induced apoptosis with the suppressive effect dependent on bcl-2-expression level. Following UVB irradiation caspase 8, 3, 9 activities were stimulated in NMK cells, while in bc1-2-transfected cells, only caspase 8, but not caspase 3 or 9 activities were stimulated. In order to investigate the effect of bc1-2 in vivo, topical application of Ad-bc1-2 on tape-stripped mouse skin was performed. Following the application, Bc1-2 was efficiently overexpressed in almost all viable keratinocytes. The expression was transient with the maximal expression of Bc1-2 at 1st day following the application of lxl0$^{9}$ PFU in 200ml. The introduced Bc1-2 remained at least for 6 days. UVB irradiation (1250 J/m$^2$) induced apoptosis within 12 h and the maximal effect was observed at 24 h in control mouse skin. Bc1-2-transfected mice skin were resistant to UVB-induced apoptosis. Topical application of empty adenovirus vector alone had no effect on Bc1-2 expression or UVB-induced apoptosis. These results indicate that adenovirus vector is an efficient gene delivery system into keratinocytes and that Bcl-2 is a potent inhibitor of UVB-induced apoptosis both in vitro and in vivo.

  • PDF

Zinc finger and BTB domain-containing protein 3 is essential for the growth of cancer cells

  • Lim, Ji-Hong
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.405-410
    • /
    • 2014
  • ZBTB3 belongs to the Zinc finger and BTB/POZ domain containing transcription factor family; however, its biological role has rarely been studied. We demonstrate for the first time, to our knowledge, that ZBTB3 is an essential factor for cancer cell growth via the regulation of the ROS detoxification pathway. Suppression of ZBTB3 using two different short hairpin RNAs in human melanoma, lung carcinoma, and breast carcinoma results in diminished cell growth. In addition, we found that suppression of ZBTB3 activates a caspase cascade, including caspase-9, -3, and PARP leading to cellular apoptosis, resulting from failed ROS detoxification. We identified that ZBTB3 plays an important role in the gene expression of ROS detoxification enzymes. Our results reveal that ZBTB3 may play a critical role in cancer cell growth via the ROS detoxification system. Therefore, therapeutic strategies that target ZBTB3 could be used in selective cancer treatments.

Dihydroaustrasulfone alcohol induces apoptosis in nasopharyngeal cancer cells by inducing reactive oxygen species-dependent inactivation of the PI3K/AKT pathway

  • Kok-Tong Tan;Yu-Hung Shih;Jiny Yin Gong;Xiang Zhang;Chiung-Yao Huang;Jui-Hsin Su;Jyh-Horng Sheu;Chi-Chen Lin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.383-398
    • /
    • 2023
  • Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Lim, Jin Woong;Yu, Sun-Kyoung;Kim, Heung-Joong;Shin, Sang Hun;Park, Bo-Ram;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2020
  • Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

15d-PGJ2 Induces Apoptosis of MCF-7 and MDA-MB-231 Cells via Increased Intracellular Calcium and Activation of Caspases, Independent of ERα and ERβ

  • Muhammad, Siti Nur Hasyila;Mokhtar, Noor Fatmawati;Yaacob, Nik Soriani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3223-3228
    • /
    • 2016
  • Reports indicate that 15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2) has anticancer activities, but its mechanisms of action have yet to be fully elucidated. We therefore investigated the effects of 15d-PGJ2 on the human breast cancer cell lines, MCF-7 (estrogen receptor $ER{\alpha}+/ER{\beta}+$) and MDA-MB-231 ($ER{\alpha}-/ER{\beta}+$). Cellular proliferation and cytotoxicity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays while apoptosis was determined by fluorescence microscopy and flow cytometry using annexin V-propidium iodide (PI) staining. ER expression was determined by Western blotting. Intracellular calcium was stained with Fluo-4 AM while intracellular caspase activities were detected with Caspase-$FLICA(R)$ and measured by flow cytometry. We showed that 15d-PGJ2 caused a significant increase in apoptosis in MCF-7 and MDA-MB-231 cells. $ER{\alpha}$ protein expression was reduced in treated MCF-7 cells but pre-incubation with the $ER{\alpha}$ inhibitor' ICI 182 780' did not affect the percentage of apoptotic cells. The expression of $ER{\beta}$ was unchanged in both cell lines. In addition, 15d-PGJ2 increased intracellular calcium ($Ca^{2+}$) staining and caspase 8, 9 and 3/7 activities. We therefore conclude that 15d-PGJ2 induces caspase-dependent apoptosis that is associated with an influx of intracellular $Ca^{2+}$ with no involvement of ER signaling.

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.

Effect of Several Species of the Family Rubiacea on Cytotoxicity and Apoptosis in HL-60 cells

  • Ju Sung-Min;Lee Jun;Choi Ho-Seung;Kim Sung-Hoon;Jeon Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.187-192
    • /
    • 2006
  • Herbal medicines have been utilized to treat a variety of diseases, including cancer. Several species of the family rubiaceae have been reported to have antitumor activity. In this study, we report the cytotoxicity and antitumor activity exhibited dy the methanol extracts prepared from Rubia radix (RRME), Uncaria gambir (UGME) and Oldenlandia diffusa (ODME) (family: Rubiaceae) against human promyleloid leukemia cell line, HL-60. The cytotoxicity of RRME (2~20 ${\mu}g/ml$), UGME (20~200 ${\mu}g/ml$) and ODME (20~200 ${\mu}g/ml$) were assessed dy the MTT reduction assay. IC50 values for RRME, UGME and ODME were 11.0, 99.5 and 106.1 ${\mu}g/ml$, respectively. When the HL-60 cells were treated with RRME (10 ${\mu}g/ml$), UGME (120 ${\mu}g/ml$) and ODME (140 ${\mu}g/ml$) for 24 h, several apoptotic characteristics such as DNA fragmentation and morphologic changes were observed. Furthermore, flow cytometric analysis was peformed to determine the percent of apoptotic cells. The poupulation of sub-G1 hypodiploid cells was increased 37.49% in RRME treatment, 12.49% in UGME treatment and 7.21% in ODME treatment compared with untreated control cells (2.64%). To further confirm apoptotic cell death, we assayed caspase-3, -8 and -9 activities in RRME, UGME and ODME-treated cells. After treatment of RRME, UGME and ODME for 12 h, caspase-3, -8 and -9 activities significantly increased.compared to untreated control cells. These results show that RRME, UGME and ODME induced apoptotic cell death in HL-60 cells and may have a possibility of potential antitumor activities.

A Study on Apoptotic Signaling Pathway in HL-60 Cells Induced by Radiation (급성전골수성백혈병 HL-60 세포주에서 방사선조사에 의한 세포고사기전)

  • Kim Hye Jung;Moon Sung Keun;Lee Jae Moon;Moon Sun Rock
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • Purpose : The mechanical insights of death of cancer cells by ionizing radiation are not of yet clearly defined. Recent evidences have demonstrated that radiation therapy may induce cell death via activation of signaling pathway for apoptosis in target cells. This study is designed whether ionizing radiation may activate the signaling cascades of apoptosis including caspase family cysteine pretenses, $Bcl_2/Bax$, cytochrome c and Fas/Fas-L in target cells. Materials and Methods : HL-60 cells were irradiated in vitro with 6 MV X-ray at dose ranges from 2 Gy to 32 Gy. The cell viability was tested by M assay and the extent of apoptosis was determined using agarose gel electrophoresis. The activities of caspase proteases were measured by proteolytic cleavages of substrates. Western blot analysis was used to monitor PARP, Caspase-3, Cytochrome-c, Bcl-2, Bax, Fas and Fas-L. Results : Ionizing radiation decreases the viability of HL-60 cells in a time and dose dependent manner. Ionizing radiation-induced death in HL-60 cells is an apoptotic death which is revealed as characteristic ladder-pattern fragmentation of genomic DNA over 16 Gy at 4 hours. ionizing radiation induces the activation of caspase-2, 3, 6, 8 and 9 of HL-60 cells in a time-dependent manner. The activation of caspase-3 pretense is also evidenced by the digestion of poly (ADP-ribose) polymerase and procaspase 3 with 16Gy ionizing irradiation. Anti-apoptotic Bcl2 expression is decreased but apoptotic Bax expression is increased with mitochondrial cytochrome c release in a time- dependent manner. In addiiton, expression of Fas and Fas-L is also increased in a time dependent manner. Conclusion : These data suggest that ionizing radiation-induced apoptosis is mediated by the activation of various signaling pathways including caspase family cysteine proteases, $Bcl_2/Bax$, Fas and Fas-L in a time and dose dependent manner.

  • PDF

Inhibitory Effect of the Methanolic Extract of Symphyocladia latiuscula on the Growth of HT-29 Human Colon Cancer Cells (보라우무 메탄올추출물의 HT-29 대장암세포 증식 억제 효과)

  • Kim, Eun-Ji;Park, So-Young;Hong, Ji-Eun;Shin, Min-Jeong;Lim, Soon-Sung;Shin, Hyun-Kyung;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.4
    • /
    • pp.431-438
    • /
    • 2007
  • In the present study, twenty eight marine algae species were evaluated for their antiproliferative effect on HT-29 human colon cancer cells. Among these, the methanolic extract of Symphyocladia latiuscula (SL Ex) showed the highest inhibitory activity on HT-29 cell growth. In this study, we examined the mechanism by which SL Ex inhibited the HT-29 cell growth. Cells were cultured with various concentrations of $(0{\sim}20{\mu}g/mL)$ SL Ex. The SL Ex substantially decreased the viable cell numbers and induced apoptosis of HT-29 cells in a dose-dependent manner Western blot analyses of total cell lysates revealed that SL Ex increased the levels of cleaved caspase-8, -9, -7, and -3, and poly (ADP-ribose) polymerase in HT-29 cells. In addition, SL Ex increased truncated Bid levels but moderately decreased Bax levels at only $20{\mu}g/mL$. Furthermore, SL Ex did not affect Bcl-2 protein levels but increased the levels of Fas in HT-29 cells. The present results indicate that SL Ex inhibits cell growth via inducing apoptosis in human colon cancer cells. The mechanism of apoptosis induction by SL Ex involves caspase-8 activation leading to changes in mitochondrial events and subsequent activation of the caspase-7/caspase-3 cascade. Our finding may lead to the development of new therapeutic strategies for the treatment of colon cancer.